Skip to main content
Log in

Lead-free thermochromic perovskites with tunable transition temperatures for smart window applications

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The structural flexibility of hybrid perovskite materials allows for phase transition and consequently thermochromic properties. Here we investigate the thermochromic performance in a series of copper-based layered perovskites with organic cations having different alky chain lengths. Their transition temperature is found to be dependent on the organic cations due to molecular motion and hydrogen bond interaction, providing possibilities to prepare thermochromic semiconductors near room temperature for smart window applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arora N, Dar MI, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin SM, Grätzel M. Science, 2017, 358: 768–771

    Article  CAS  PubMed  Google Scholar 

  2. Snaith HJ, Hacke P. Nat Energy, 2018, 3: 459–465

    Article  Google Scholar 

  3. Tsai H, Nie W, Blancon JC, Stoumpos CC, Asadpour R, Harutyunyan B, Neukirch AJ, Verduzco R, Crochet JJ, Tretiak S, Pedesseau L, Even J, Alam MA, Gupta G, Lou J, Ajayan PM, Bedzyk MJ, Kanatzidis MG, Mohite AD. Nature, 2016, 536: 312–316

    Article  CAS  PubMed  Google Scholar 

  4. Meng L, You J, Yang Y. Nat Commun, 2018, 9: 5265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xiao J, Shi J, Li D, Meng Q. Sci China Chem, 2015, 58: 221–238

    Article  CAS  Google Scholar 

  6. Liu X, Huang P, Dong Q, Wang Z, Zhang K, Yu H, Lei M, Zhou Y, Song B, Li Y. Sci China Chem, 2017, 60: 136–143

    Article  CAS  Google Scholar 

  7. Grancini G, Nazeeruddin MK. Nat Rev Mater, 2019, 4: 4–22

    Article  CAS  Google Scholar 

  8. Yuan M, Quan LN, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard EM, Kanjanaboos P, Lu Z, Kim DH, Sargent EH. Nat Nanotech, 2016, 11: 872–877

    Article  CAS  Google Scholar 

  9. Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W. Nature, 2018, 562: 249–253

    Article  PubMed  Google Scholar 

  10. Peng M, Wen W, Chen S, Chen B, Yan K, Hu H, Dong B, Gao X, Yu X, Jiang X, Zou D. Sci China Chem, 2016, 59: 653–658

    Article  CAS  Google Scholar 

  11. Xing G, Mathews N, Lim SS, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum TC. Nat Mater, 2014, 13: 476–480

    Article  CAS  PubMed  Google Scholar 

  12. Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson MV, Trinh MT, Jin S, Zhu XY. Nat Mater, 2015, 14: 636–642

    Article  CAS  PubMed  Google Scholar 

  13. Li YJ, Lv Y, Zou CL, Zhang W, Yao J, Zhao YS. J Am Chem Soc, 2016, 138: 2122–2125

    Article  CAS  PubMed  Google Scholar 

  14. Zhang W, Peng L, Liu J, Tang A, Hu JS, Yao J, Zhao YS. Adv Mater, 2016, 28: 4040–4046

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Li X, Song J, Xiao L, Zeng H, Sun H. Adv Mater, 2015, 27: 7101–7108

    Article  CAS  PubMed  Google Scholar 

  16. Tang B, Dong H, Sun L, Zheng W, Wang Q, Sun F, Jiang X, Pan A, Zhang L. ACS Nano, 2017, 11: 10681–10688

    Article  CAS  PubMed  Google Scholar 

  17. You YM, Liao WQ, Zhao D, Ye HY, Zhang Y, Zhou Q, Niu X, Wang J, Li PF, Fu DW, Wang Z, Gao S, Yang K, Liu JM, Li J, Yan Y, Xiong RG. Science, 2017, 357: 306–309

    Article  CAS  PubMed  Google Scholar 

  18. Fang Y, Dong Q, Shao Y, Yuan Y, Huang J. Nat Photon, 2015, 9: 679–686

    Article  CAS  Google Scholar 

  19. Hsiao YC, Wu T, Zang H, Li M, Hu B. Sci China Chem, 2015, 58: 239–247

    Article  CAS  Google Scholar 

  20. Zhang C, Sun D, Sheng CX, Zhai YX, Mielczarek K, Zakhidov A, Vardeny ZV. Nat Phys, 2015, 11: 427–434

    Article  CAS  Google Scholar 

  21. Hsiao YC, Wu T, Li M, Hu B. Adv Mater, 2015, 27: 2899–2906

    Article  CAS  PubMed  Google Scholar 

  22. Long G, Jiang C, Sabatini R, Yang Z, Wei M, Quan LN, Liang Q, Rasmita A, Askerka M, Walters G, Gong X, Xing J, Wen X, Quintero-Bermudez R, Yuan H, Xing G, Wang XR, Song D, Voznyy O, Zhang M, Hoogland S, Gao W, Xiong Q, Sargent EH. Nat Photon, 2018, 12: 528–533

    Article  CAS  Google Scholar 

  23. Wei H, DeSantis D, Wei W, Deng Y, Guo D, Savenije TJ, Cao L, Huang J. Nat Mater, 2017, 16: 826–833

    Article  CAS  PubMed  Google Scholar 

  24. Ha ST, Shen C, Zhang J, Xiong Q. Nat Photon, 2016, 10: 115–121

    Article  CAS  Google Scholar 

  25. Kim GY, Senocrate A, Yang TY, Gregori G, Grätzel M, Maier J. Nat Mater, 2018, 17: 445–449

    Article  CAS  PubMed  Google Scholar 

  26. Lin J, Lai M, Dou L, Kley CS, Chen H, Peng F, Sun J, Lu D, Hawks SA, Xie C, Cui F, Alivisatos AP, Limmer DT, Yang P. Nat Mater, 2018, 17: 261–267

    Article  CAS  PubMed  Google Scholar 

  27. Halder A, Choudhury D, Ghosh S, Subbiah AS, Sarkar SK. J Phys Chem Lett, 2015, 6: 3180–3184

    Article  CAS  Google Scholar 

  28. Ferreira CF, Pérez-Cordero EE, Abboud KA, Talham DR. Chem Mater, 2016, 28: 5522–5529

    Article  CAS  Google Scholar 

  29. De Bastiani M, Saidaminov MI, Dursun I, Sinatra L, Peng W, Buttner U, Mohammed OF, Bakr OM. Chem Mater, 2017, 29: 3367–3370

    Article  CAS  Google Scholar 

  30. Wheeler LM, Moore DT, Ihly R, Stanton NJ, Miller EM, Tenent RC, Blackburn JL, Neale NR. Nat Commun, 2017, 8: 1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cortecchia D, Dewi HA, Yin J, Bruno A, Chen S, Baikie T, Boix PP, Grätzel M, Mhaisalkar S, Soci C, Mathews N. Inorg Chem, 2016, 55: 1044–1052

    Article  CAS  PubMed  Google Scholar 

  32. Bloomquist DR, Pressprich MR, Willett RD. J Am Chem Soc, 1988, 110: 7391–7398

    Article  CAS  Google Scholar 

  33. Willett RD, Haugen JA, Lebsack J, Morrey J. Inorg Chem, 1974, 13: 2510–2513

    Article  CAS  Google Scholar 

  34. Riley MJ, Neill D, Bernhardt PV, Byriel KA, Kennard CHL. Inorg Chem, 1998, 37: 3635–3639

    Article  CAS  PubMed  Google Scholar 

  35. Willett R, Place H, Middleton M. J Am Chem Soc, 1988, 110: 8639–8650

    Article  CAS  Google Scholar 

  36. Sheleg AU, Dekola TI, Tekhanovich NP. Phys Solid State, 2005, 47: 2138–2140

    Article  CAS  Google Scholar 

  37. Vishwakarma AK, Kumari R, Ghalsasi PS, Arulsamy N. J Mol Structure, 2017, 1141: 93–98

    Article  CAS  Google Scholar 

  38. Zolfaghari P, de Wijs GA, de Groot RA. J Phys-Condens Matter, 2013, 25: 295502

    Article  CAS  PubMed  Google Scholar 

  39. Pabst I, Fuess H, Bats JW. Acta Crystlogr C Cryst Struct Commun, 1987, 43: 413–416

    Article  Google Scholar 

  40. Smith DW. Coord Chem Rev, 1976, 21: 93–158

    Article  CAS  Google Scholar 

  41. Yi H, Yang D, Xin J, Qi X, Lan Y, Deng Y, Pao CW, Lee JF, Lei A. Nat Commun, 2017, 8: 14794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Valiente R, Rodriguez F. J Phys-Condens Matter, 1998, 10: 9525 9534

    Article  Google Scholar 

  43. Beattie IR, Gilson TR, Ozin GA. J Chem Soc A, 1969, 0: 534–541

    Article  CAS  Google Scholar 

  44. Witteveen HT, Jongejan DL, Brandwijk V. Mater Res Bull, 1974, 9: 345–352

    Article  CAS  Google Scholar 

  45. Herzog-Cance MH, Jones DJ, El Mejjad R, Rozière J, Tomkinson J. J Chem Soc Faraday Trans, 1992, 88: 2275–2281

    Article  CAS  Google Scholar 

  46. Mostafa MF, El-Hakim SA. Phase Transit, 2003, 76: 587–599

    Article  CAS  Google Scholar 

  47. Long GS, Wei M, Willett RD. Inorg Chem, 1997, 36: 3102–3107

    Article  CAS  PubMed  Google Scholar 

  48. Herreros J, Tello MJ, Bocanegra EH. Mater Res Bull, 1984, 19: 955–960

    Article  CAS  Google Scholar 

  49. Li L, Shang X, Wang S, Dong N, Ji C, Chen X, Zhao S, Wang J, Sun Z, Hong M, Luo J. J Am Chem Soc, 2018, 140: 6806–6809

    Article  CAS  PubMed  Google Scholar 

  50. Van Oort MJM, Neshvad G, White MA. J Solid State Chem, 1987, 69: 145–152

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2017YFA0204502) and the National Natural Science Foundation of China (21873105). The authors appreciate the 1W1B and 1W2A stations in Beijing Synchrotron Radiation Facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuang Zhang or Yong Sheng Zhao.

Additional information

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, X., Cui, P. et al. Lead-free thermochromic perovskites with tunable transition temperatures for smart window applications. Sci. China Chem. 62, 1257–1262 (2019). https://doi.org/10.1007/s11426-019-9487-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9487-0

Keywords

Navigation