Skip to main content

Optical Properties of Metal Oxide-Based Perovskite Structures

  • Chapter
  • First Online:
Optical Properties of Metal Oxide Nanostructures

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 26))

  • 388 Accesses

Abstract

Perovskite materials with the composition ABO3, where A and B are cations and O is the oxygen anion, have been studied extensively for their intriguing physical properties as well as the potential for practical applications. Perovskites have been at the forefront of revolutionary discoveries ranging from ceramic high temperature superconductors to high-efficiency photovoltaics. Many different types of lattice distortions can occur owing to the flexibility of bond angles within the ideal perovskite structure. A broad range of novel functional materials and device concepts have been envisaged through fundamental understanding of the relationships between the structural and chemical compatibility, thermal stability, solid solubility, and lattice strain. In this chapter, we review some of the fundamental optical properties of metal oxide perovskites. We highlight the role of defects, and shape anisotropy to show the variation of optical properties from nanocrystals to nanowires and nanosheets. We discuss the advancements in photovoltaics and other optoelectronic devices, and conclude with a comparison of optical properties of metal oxide perovskites with halide perovskites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Peña, J.L.G. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2017 (2001)

    Article  Google Scholar 

  2. X. Huang, G. Zhao, G. Wang, J.T.S. Irvine, Synthesis and applications of nanoporous perovskite metal oxides. Chem. Sci. 9, 3623–3637 (2018)

    Article  Google Scholar 

  3. A.I. Kurbakov, Electronic, structural and magnetic phase diagram of Sm1–xSrxMnO3 manganites. J. Magn. Magn. Mater. 322, 967–972 (2010). https://doi.org/10.1016/j.jmmm.2009.11.034

    Article  Google Scholar 

  4. P. Ciambelli, S. Cimino, S. De Rossi et al., AMnO3 (A = LA, Nd, Sm) and Sm(1–x)Sr(x)MnO3 perovskites as combustion catalysts: structural, redox and catalytic properties. Appl. Catal. B Environ. 24, 243–253 (2000). https://doi.org/10.1016/S0926-3373(99)00110-1

    Article  Google Scholar 

  5. F.S. Toniolo, M. Schmal, Improvement of catalytic performance of perovskites by partial substitution of cations and supporting on high surface area materials, in Perovskite Materials—Synthesis, Characterisation, Properties, and Applications (2016)

    Google Scholar 

  6. S. Royer, D. Duprez, F. Can et al., Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem. Rev. 114, 10292–10368 (2014)

    Article  Google Scholar 

  7. H. Najjar, H. Batis, Development of Mn-based perovskite materials: chemical structure and applications. Catal. Rev. Sci. Eng. 58, 371–438 (2016). https://doi.org/10.1080/01614940.2016.1198203

    Article  Google Scholar 

  8. S. Tasleem, M. Tahir, Recent progress in structural development and band engineering of perovskites materials for photocatalytic solar hydrogen production: a review. Int. J. Hydrog. Energy 45, 19078–19111 (2020)

    Article  Google Scholar 

  9. E. Grabowska, Selected perovskite oxides: characterization, preparation and photocatalytic properties-A review. Appl. Catal. B Environ. 186, 97–126 (2016)

    Article  Google Scholar 

  10. F. Polo-Garzon, Z. Wu, Acid-base catalysis over perovskites: a review. J. Mater. Chem. A 6, 2877–2894 (2018)

    Article  Google Scholar 

  11. K. Kamata, Perovskite oxide catalysts for liquid-phase organic reactions. Bull. Chem. Soc. Jpn. 92, 133–151 (2019). https://doi.org/10.1246/bcsj.20180260

    Article  Google Scholar 

  12. G. Koch, M. Hävecker, D. Teschner et al., Surface conditions that constrain alkane oxidation on perovskites. ACS Catal. 10, 7007–7020 (2020). https://doi.org/10.1021/acscatal.0c01289

    Article  Google Scholar 

  13. J.L.G. Fierro, L.G. Tejuca, Non-stoichiometric surface behaviour of LaMO3 oxides as evidenced by XPS. Appl. Surf. Sci. 27, 453–457 (1987). https://doi.org/10.1016/0169-4332(87)90154-1

    Article  Google Scholar 

  14. R. Ignatans, G. Mallia, E.A. Ahmad et al., The effect of surface reconstruction on the oxygen reduction reaction properties of LaMnO3. J. Phys. Chem. C 123, 11621–11627 (2019). https://doi.org/10.1021/acs.jpcc.9b00458

    Article  Google Scholar 

  15. A. Badreldin, A.E. Abusrafa, A. Abdel-Wahab, Oxygen-deficient perovskites for oxygen evolution reaction in alkaline media: a review. Emergent Mater. 3, 567–590 (2020)

    Article  Google Scholar 

  16. G. Koch, M. Hävecker, P. Kube et al., The influence of the chemical potential on defects and function of perovskites in catalysis. Front. Chem. 9(2021). https://doi.org/10.3389/fchem.2021.746229

  17. Y. Yamada, Y. Kanemitsu, Photoluminescence spectra of perovskite oxide semiconductors. J. Lumin. 30–34 (2013)

    Google Scholar 

  18. H. Yasuda, Y. Yamada, T. Tayagaki, Y. Kanemitsu, Spatial distribution of carriers in SrTiO3 revealed by photoluminescence dynamics measurements. Phys. Rev. B—Condens. Matter. Mater. Phys. 78(2008). https://doi.org/10.1103/PhysRevB.78.233202

  19. H. Yasuda, Y. Kanemitsu, Dynamics of nonlinear blue photoluminescence and Auger recombination in SrTiO3. Phys. Rev. B 77, 193202 (2008)

    Article  Google Scholar 

  20. Y. Yamada, H. Yasuda, T. Tayagaki, Y. Kanemitsu, Temperature dependence of photoluminescence spectra of nondoped and electron-doped SrTiO3: crossover from auger recombination to single-carrier trapping. Phys. Rev. Lett. 102(2009). https://doi.org/10.1103/PhysRevLett.102.247401

  21. T. Arima, Y. Tokura, J.B. Torrance, Variation of optical gaps in perovskite-type 3d transition-metal oxides. Phys. Rev. B 48, 17006–17009 (1993). https://doi.org/10.1103/PhysRevB.48.17006

    Article  Google Scholar 

  22. W. Zhang, J. Tang, J. Ye, Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M = Ca, Sr, and Ba) photocatalysts. J. Mater. Res. 22, 1859–1871 (2007). https://doi.org/10.1557/jmr.2007.0259

    Article  Google Scholar 

  23. Y. Yan, H. Yang, X. Zhao et al., Enhanced photocatalytic activity of surface disorder-engineered CaTiO3. Mater. Res. Bull. 105, 286–290 (2018). https://doi.org/10.1016/j.materresbull.2018.05.008

    Article  Google Scholar 

  24. S. Suzuki, A. Iwase, A. Kudo, Long wavelength visible light-responsive SrTiO3photocatalysts doped with valence-controlled Ru for sacrificial H2and O2evolution. Catal. Sci. Technol. 10, 4912–4916 (2020). https://doi.org/10.1039/d0cy00600a

    Article  Google Scholar 

  25. Y. Li, H. Gou, J. Lu, C. Wang, A two-step synthesis of NaTaO3 microspheres for photocatalytic water splitting. Int. J. Hydrog. Energy. 13481–13485 (2014)

    Google Scholar 

  26. L. Ernawati, R.A. Wahyuono, H. Widiyandari et al., Experimental data of CaTiO3 photocatalyst for degradation of organic pollutants (Brilliant green dye)—Green synthesis, characterization and kinetic study. Data Br. 32(2020). https://doi.org/10.1016/j.dib.2020.106099

  27. S. Sharma, M. Kumar, Band gap tuning and optical properties of BiFeO3 nanoparticles. Mater. Today Proc. 28, 168–171 (2020). https://doi.org/10.1016/j.matpr.2020.01.496

    Article  Google Scholar 

  28. M. Ismael, M. Wark, Perovskite-type LaFeO3: photoelectrochemical properties and photocatalytic degradation of organic pollutants under visible light irradiation. Catalysts 9(2019). https://doi.org/10.3390/catal9040342

  29. Q. Liu, Y. Chai, L. Zhang et al., Highly efficient Pt/NaNbO3 nanowire photocatalyst: its morphology effect and application in water purification and H2 production. Appl. Catal. B Environ. 205, 505–513 (2017). https://doi.org/10.1016/j.apcatb.2016.12.065

    Article  Google Scholar 

  30. C. Huang, L. Chen, H. Li et al., Synthesis and application of Bi2WO6 for the photocatalytic degradation of two typical fluoroquinolones under visible light irradiation. RSC Adv. 9, 27768–27779 (2019). https://doi.org/10.1039/c9ra04445k

    Article  Google Scholar 

  31. J. Xu, B. Luo, W. Gu et al., Fabrication of In2S3/NaTaO3 composites for enhancing the photocatalytic activity toward the degradation of tetracycline. New J. Chem. 42, 5052–5058 (2018). https://doi.org/10.1039/c7nj05123a

    Article  Google Scholar 

  32. Z. Fu, S. Zhang, Z. Fu, Hydrothermal preparation of NaTaO3/rGO composite photocatalyst to enhance UV photocatalytic activity. Results Phys. 15(2019). https://doi.org/10.1016/j.rinp.2019.102669

  33. L. Zhang, T. Xu, X. Zhao, Y. Zhu, Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Appl. Catal. B Environ. 98, 138–146 (2010). https://doi.org/10.1016/j.apcatb.2010.05.022

    Article  Google Scholar 

  34. Y.A. Alsabah, A.T. Elden, M.S. AlSalhi et al., Structural and optical properties of A2YVO6 (A = Mg, Sr) double perovskite oxides. Results Phys. 15(2019). https://doi.org/10.1016/j.rinp.2019.102589

  35. T. Ling, D.Y. Yan, Y. Jiao et al., Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat. Commun. 7(2016). https://doi.org/10.1038/ncomms12876

  36. Y. Zhu, X. Zhong, S. Jin et al., Oxygen defect engineering in double perovskite oxides for effective water oxidation. J. Mater. Chem. A 8, 10957–10965 (2020). https://doi.org/10.1039/d0ta04362a

    Article  Google Scholar 

  37. S.N. Basahel, A.H.A. Medkhali, M. Mokhtar, K. Narasimharao, Noble metal (Pd, Pt and Rh) incorporated LaFeO3 perovskite oxides for catalytic oxidative cracking of n-propane. Catal. Today 397–399, 81–93 (2022). https://doi.org/10.1016/j.cattod.2021.11.032

    Article  Google Scholar 

  38. W. Li, J. Shi, K.H.L. Zhang, J.L. Macmanus-Driscoll, Defects in complex oxide thin films for electronics and energy applications: challenges and opportunities. Mater. Horizons 7, 2832–2859 (2020)

    Article  Google Scholar 

  39. A. Herklotz, D. Lee, E.J. Guo, et al., Strain coupling of oxygen non-stoichiometry in perovskite thin films. J. Phys. Condens. Matter 29 (2017)

    Google Scholar 

  40. J. Park, Y.N. Wu, W.A. Saidi et al., First-principles exploration of oxygen vacancy impact on electronic and optical properties of ABO3: δ(A = La, Sr; B = Cr, Mn) perovskites. Phys. Chem. Chem. Phys. 22, 27163–27172 (2020). https://doi.org/10.1039/d0cp05445c

    Article  Google Scholar 

  41. Q. Ji, L. Bi, J. Zhang et al., The role of oxygen vacancies of ABO3perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 13, 1408–1428 (2020)

    Article  Google Scholar 

  42. D. Ji, S. Cai, T.R. Paudel et al., Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019). https://doi.org/10.1038/s41586-019-1255-7

    Article  Google Scholar 

  43. L. Li, L. Liang, H. Wu, X. Zhu, One-dimensional perovskite manganite oxide nanostructures: recent developments in synthesis, characterization, transport properties, and applications. Nanoscale Res. Lett. 11 (2016)

    Google Scholar 

  44. S. Stemmer, A.J. Millis, Quantum confinement in oxide quantum wells. MRS Bull. 38, 1032–1039 (2013). https://doi.org/10.1557/mrs.2013.265

    Article  Google Scholar 

  45. M. Choi, C. Lin, M. Butcher et al., Quantum confinement in transition metal oxide quantum wells. Appl. Phys. Lett. 106(2015). https://doi.org/10.1063/1.4921013

  46. K. Yoshimatsu, T. Okabe, H. Kumigashira et al., dimensional-crossover-driven metal-insulator transition in SrVO3 ultrathin films. Phys. Rev. Lett. 104, 147601 (2010)

    Article  Google Scholar 

  47. K. Yoshimatsu, K. Horiba, H. Kumigashira, et al., Metallic quantum well states in artificial structures of strongly correlated oxide. Science (80) 333, 319–322 (2011). https://doi.org/10.1126/science.1205771

  48. D. Grosso, C. Boissiere, B. Smarsly et al., Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nat. Mater. 3, 787–792 (2004). https://doi.org/10.1038/nmat1206

    Article  Google Scholar 

  49. C. Reitz, K. Brezesinski, J. Haetge et al., Nanocrystalline NaTaO3 thin film materials with ordered 3D mesoporous and nanopillar-like structures through PIB-b-PEO polymer templating: towards high-performance UV-light photocatalysts. RSC Adv 2, 5130–5133 (2012). https://doi.org/10.1039/c2ra20203d

    Article  Google Scholar 

  50. C. Reitz, C. Suchomski, C. Weidmann, T. Brezesinski, Block copolymer-templated BiFeO3 nanoarchitectures composed of phase-pure crystallites intermingled with a continuous mesoporosity: effective visible-light photocatalysts? Nano Res. 4, 414–424 (2011). https://doi.org/10.1007/s12274-011-0096-y

    Article  Google Scholar 

  51. J.Y. Do, Y. Im, B.S. Kwak et al., Preparation of basalt fiber@perovskite PbTiO3 core-shell composites and their effects on CH4 production from CO2 photoreduction. Ceram. Int. 42, 5942–5951 (2016). https://doi.org/10.1016/j.ceramint.2015.12.142

    Article  Google Scholar 

  52. Y.L. Liu, C.L. Yang, M.S. Wang et al., Te-doped perovskite NaTaO3 as a promising photocatalytic material for hydrogen production from water splitting driven by visible light. Mater. Res. Bull. 107, 125–131 (2018). https://doi.org/10.1016/j.materresbull.2018.06.040

    Article  Google Scholar 

  53. L.M. Prócel, F. Tipán, A. Stashans, Mott-Wannier excitons in the tetragonal BaTiO3 lattice. Int. J. Quantum Chem. 91, 586–590 (2003). https://doi.org/10.1002/qua.10471

    Article  Google Scholar 

  54. X. Li, L. Guan, J.Y. An et al., Synthesis of red phosphor CaZrO3:Eu3+ for white light-emitting diodes. Chinese Phys. Lett. 28(2011). https://doi.org/10.1088/0256-307X/28/2/027805

  55. L. Zhang, X. Sun, Enhanced Eu3+ emission in Ca2LaTaO6:Eu3+ phosphors by codoping Bi3+. J. Mater. Sci. Mater. Electron. 31, 9160–9166 (2020). https://doi.org/10.1007/s10854-020-03445-0

    Article  Google Scholar 

  56. P. Singh, R.S. Yadav, S.B. Rai, Enhanced photoluminescence in a Eu3+ doped CaTiO3 perovskite phosphor via incorporation of alkali ions for white LEDs. J. Phys. Chem. Solids 151(2021). https://doi.org/10.1016/j.jpcs.2020.109916

  57. A. Maurya, R.S. Yadav, R.V. Yadav et al., Enhanced green upconversion photoluminescence from Ho3+/Yb3+ co-doped CaZrO3 phosphor via Mg2+ doping. RSC Adv. 6, 113469–113477 (2016). https://doi.org/10.1039/c6ra23835a

    Article  Google Scholar 

  58. Y. Xie, X. Geng, J. Guo et al., Luminescence of a novel double-perovskite Sr2InSbO6:Eu3+ orange-red-emitting phosphor for white LEDs and visualization of latent fingerprints. Mater. Res. Bull. 146(2022). https://doi.org/10.1016/j.materresbull.2021.111574

  59. S. Zhao, J. Xiang, M.H. Fang et al., A novel high thermal stability Ba2CaWO6: Mn4+ far-red emitting phosphor with a double-perovskite structure for plant growth LEDs. Opt. Mater. (Amst) 124(2022). https://doi.org/10.1016/j.optmat.2022.112052

  60. S.C. Watthage, Z. Song, A.B. Phillips, M.J. Heben, Evolution of perovskite solar cells, in Perovskite Photovoltaics: basic to Advanced Concepts and Implementation (2018), pp 43–88

    Google Scholar 

  61. X.Z. Jin, Y.L. Shao, Y. Zheng, T. Zhang, Progress in modification of strontium Titanate photocatalyst. J. Mol. Catal. 34, 559–568 (2020)

    Google Scholar 

  62. E. García-López, G. Marcì, B. Megna et al., SrTiO3-based perovskites: Preparation, characterization and photocatalytic activity in gas-solid regime under simulated solar irradiation. J Catal 321, 13–22 (2015). https://doi.org/10.1016/j.jcat.2014.10.014

    Article  Google Scholar 

  63. R. Ran, X. Wu, D. Weng, J. Fan, Oxygen storage capacity and structural properties of Ni-doped LaMnO 3 perovskites. J. Alloys Compd. 577, 288–294 (2013). https://doi.org/10.1016/j.jallcom.2013.05.041

    Article  Google Scholar 

  64. M.L. Crespillo, J.T. Graham, F. Agulló-López et al., Real-Time identification of oxygen vacancy centers in LiNbO3 and SrTiO3 during irradiation with high energy particles. Crystals 11(2021). https://doi.org/10.3390/cryst11030315

  65. N. Afifah, R. Saleh, Enhancement of photocatalytic activities of perovskite LaFeO3 composite by incorporating nanographene platelets. IOP Conf. Ser.: Mater. Sci. Eng.

    Google Scholar 

  66. L. Wang, Y. Li, A. Bera et al., Device performance of the Mott insulator LaVO3 as a photovoltaic material. Phys. Rev. Appl. 3(2015). https://doi.org/10.1103/PhysRevApplied.3.064015

  67. J. Dong, J. Wu, J. Jia et al., Efficient perovskite solar cells employing a simply-processed CdS electron transport layer. J. Mater. Chem. C 5, 10023–10028 (2017). https://doi.org/10.1039/c7tc03343e

    Article  Google Scholar 

  68. L. López-Mir, C. Frontera, H. Aramberri et al., Anisotropic sensor and memory device with a ferromagnetic tunnel barrier as the only magnetic element. Sci. Rep. 8(2018). https://doi.org/10.1038/s41598-017-19129-5

  69. K. Uchino, Glory of piezoelectric perovskites. Sci. Technol. Adv. Mater. 16 (2015)

    Google Scholar 

  70. C. Yu, Y. Shimizu, H. Arai, Investigation on a lean-burn oxygen sensor using perovskite-type oxides. Chem. Lett. 15, 563–566 (1986). https://doi.org/10.1246/cl.1986.563

    Article  Google Scholar 

  71. S.J. Skinner, Recent advances in perovskite-type materials for solid oxide fuel cell cathodes. Int. J. Inorg. Mater. 3, 113–121 (2001). https://doi.org/10.1016/S1466-6049(01)00004-6

    Article  Google Scholar 

  72. M.Y. Cho, S. Kim, I.S. Kim et al., Perovskite-induced ultrasensitive and highly stable humidity sensor systems prepared by aerosol deposition at room temperature. Adv. Funct. Mater. 30(2020). https://doi.org/10.1002/adfm.201907449

  73. Y. Xu, U. Memmert, U. Hartmann, Magnetic field sensors from polycrystalline manganites. Sens. Actuat. A Phys. 91, 26–29 (2001). https://doi.org/10.1016/S0924-4247(01)00493-9

    Article  Google Scholar 

  74. J. Herrán, G.G. Mandayo, E. Castaño, Solid state gas sensor for fast carbon dioxide detection. Sens. Actuat. B Chem. 129, 705–709 (2008). https://doi.org/10.1016/j.snb.2007.09.028

    Article  Google Scholar 

  75. Y. Liang, G. Shao, First principles study for band engineering of KNbO3 with 3d transition metal substitution. RSC Adv. 9, 7551–7559 (2019). https://doi.org/10.1039/c9ra00289h

    Article  Google Scholar 

  76. J. Tang, Y. Wang, L. Zhang et al., Multiferroic properties of Ba/Ni co-doped KNbO3with narrow band-gap. J. Alloys Compd. 703, 67–72 (2017). https://doi.org/10.1016/j.jallcom.2017.01.180

    Article  Google Scholar 

  77. H. Mizoguchi, P.M. Woodward, C.H. Park, D.A. Keszler, Strong near-infrared luminescence in BaSnO3. J. Am. Chem. Soc. 126, 9796–9800 (2004). https://doi.org/10.1021/ja048866i

    Article  Google Scholar 

  78. P. Docampo, J.M. Ball, M. Darwich et al., Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4(2013). https://doi.org/10.1038/ncomms3761

  79. M. Najafi, F. Di Giacomo, D. Zhang et al., Highly efficient and stable flexible perovskite solar cells with metal oxides nanoparticle charge extraction layers. Small 14(2018). https://doi.org/10.1002/smll.201702775

  80. C. Liu, L. Zhang, X. Zhou, et al., Hydrothermally treated SnO2 as the electron transport layer in high-efficiency flexible perovskite solar cells with a certificated efficiency of 17.3%. Adv. Funct. Mater. 29 (2019). https://doi.org/10.1002/adfm.201807604

  81. K. Valadi, S. Gharibi, R. Taheri-Ledari et al., Metal oxide electron transport materials for perovskite solar cells: a review. Environ. Chem. Lett. 19, 2185–2207 (2021)

    Article  Google Scholar 

  82. J.S. Shaikh, N.S. Shaikh, S.S. Mali et al., Nanoarchitectures in dye-sensitized solar cells: metal oxides, oxide perovskites and carbon-based materials. Nanoscale 10, 4987–5034 (2018)

    Article  Google Scholar 

  83. S.S. Shin, E.J. Yeom, W.S. Yang et al., Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science (80) 356, 167–171 (2017). https://doi.org/10.1126/science.aam6620

  84. P. Günter, Electro-optical properties of KNbO3. Opt. Commun. 11, 285–290 (1974). https://doi.org/10.1016/0030-4018(74)90183-7

    Article  Google Scholar 

  85. S.A. Khan, H.U. Khan, S. Mehmood, Z. Ali, Structural, electronic, optical and thermoelectric properties in the phases of AgTaO3. Mater. Sci. Semicond. Process. 122(2021). https://doi.org/10.1016/j.mssp.2020.105467

  86. Y. Wu, T. He, Ag loading induced visible light photocatalytic activity for pervoskite SrTiO3 nanofibers. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 199, 283–289 (2018). https://doi.org/10.1016/j.saa.2018.03.078

    Article  Google Scholar 

  87. V. Jayaraman, D. Sarkar, R. Rajendran et al., Synergistic effect of band edge potentials on BiFeO3/V2O5 composite: enhanced photo catalytic activity. J. Environ. Manag. 247, 104–114 (2019). https://doi.org/10.1016/j.jenvman.2019.06.041

    Article  Google Scholar 

  88. Z. Behzadifard, Z. Shariatinia, M. Jourshabani, Novel visible light driven CuO/SmFeO3 nanocomposite photocatalysts with enhanced photocatalytic activities for degradation of organic pollutants. J. Mol. Liq. 262, 533–548 (2018). https://doi.org/10.1016/j.molliq.2018.04.126

    Article  Google Scholar 

  89. A. Arabi, M. Fazli, M.H. Ehsani, Synthesis and characterization of calcium-doped lanthanum manganite nanowires as a photocatalyst for degradation of methylene blue solution under visible light irradiation. Bull. Mater. Sci. 41(2018). https://doi.org/10.1007/s12034-018-1590-6

  90. P. Nakhostin Panahi, M.H. Rasoulifard, S. Babaei, Photocatalytic activity of cation (Mn) and anion (N) substitution in LaCoO3 nanoperovskite under visible light. Rare Met. 39, 139–146 (2020). https://doi.org/10.1007/s12598-019-01329-9

    Article  Google Scholar 

  91. S. Jayapandi, D. Lakshmi, S. Premkumar et al., Augmented photocatalytic and electrochemical activities of Ag tailored LaCoO3 perovskite semiconductor. Mater. Lett. 218, 205–208 (2018). https://doi.org/10.1016/j.matlet.2018.02.015

    Article  Google Scholar 

  92. Y. Yuan, X. Zhang, L. Liu et al., Synthesis and photocatalytic characterization of a new photocatalyst BaZrO3. Int. J. Hydrog. Energy 33, 5941–5946 (2008). https://doi.org/10.1016/j.ijhydene.2008.07.052

    Article  Google Scholar 

  93. T. Soltani, A. Tayyebi, B.K. Lee, BiFeO3/BiVO4 p−n heterojunction for efficient and stable photocatalytic and photoelectrochemical water splitting under visible-light irradiation. Catal. Today 340, 188–196 (2020). https://doi.org/10.1016/j.cattod.2018.09.030

    Article  Google Scholar 

  94. T. Ohno, T. Tsubota, Y. Nakamura, K. Sayama, Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light. Appl. Catal. A Gen. 288, 74–79 (2005). https://doi.org/10.1016/j.apcata.2005.04.035

    Article  Google Scholar 

  95. Y. Zhang, W.X. Wang, Y.S. Guo et al., Hydrothermal synthesis of Bi2O4/NaBiO3 heterostructures with enhanced visible light photocatalytic properties. J. Phys. Chem. Solids 149(2021). https://doi.org/10.1016/j.jpcs.2020.109766

  96. A. Haruna, I. Abdulkadir, S.O. Idris, Synthesis, characterization and photocatalytic properties of Bi0.85−XMXBa0.15FeO3 (M = Na and K, X = 0, 0.1) perovskite-like nanoparticles using the sol-gel method. J. King Saud. Univ. Sci. 32, 896–903 (2020). https://doi.org/10.1016/j.jksus.2019.05.005

    Article  Google Scholar 

  97. S. Guan, R. Li, X. Sun et al., Construction of novel ternary Au/LaFeO3/Cu2O composite photocatalysts for RhB degradation via photo-Fenton catalysis. Mater. Technol. 36, 603–615 (2021). https://doi.org/10.1080/10667857.2020.1782062

    Article  Google Scholar 

  98. C.H. Ng, T.S. Ripolles, K. Hamada et al., Tunable open circuit voltage by engineering inorganic Cesium lead bromide/iodide perovskite solar cells. Sci. Rep. 8(2018). https://doi.org/10.1038/s41598-018-20228-0

  99. Y. Liu, Y. Zhang, X. Zhu et al., Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater. 33(2021). https://doi.org/10.1002/adma.202006010

  100. K. Poorkazem, T.L. Kelly, Improving the stability and decreasing the trap state density of mixed-cation perovskite solar cells through compositional engineering. Sustain. Energy Fuels 2, 1332–1341 (2018). https://doi.org/10.1039/c8se00127h

    Article  Google Scholar 

  101. W.J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104(2014). https://doi.org/10.1063/1.4864778

  102. M. Imran, V. Caligiuri, M. Wang et al., Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc. 140, 2656–2664 (2018). https://doi.org/10.1021/jacs.7b13477

    Article  Google Scholar 

  103. L.C. Schmidt, A. Pertegás, S. González-Carrero et al., Nontemplate synthesis of CH3NH3PbBr 3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850–853 (2014). https://doi.org/10.1021/ja4109209

    Article  Google Scholar 

  104. D. Shi, V. Adinolfi, R. Comin et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science (80) 347, 519–522 (2015). https://doi.org/10.1126/science.aaa2725

  105. S.D. Stranks, G.E. Eperon, G. Grancini et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science (80) 342, 341–344 (2013). https://doi.org/10.1126/science.1243982

  106. J. Shamsi, A.S. Urban, M. Imran et al., Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644

    Article  Google Scholar 

  107. Z. Fan, J. Liu, W. Zuo et al., Mixed-cation MAxCs1−xPbBr 3 Perovskite single crystals with composition management for high-sensitivity X-ray detection. Phys. Status Solidi—Rapid Res. Lett. 14(2020). https://doi.org/10.1002/pssr.202000226

  108. L. Ma, Z. Yan, X. Zhou et al., A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystals. Nat. Commun. 12(2021). https://doi.org/10.1038/s41467-021-22193-1

  109. W. Peng, L. Wang, B. Murali et al., Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv. Mater. 28, 3383–3390 (2016). https://doi.org/10.1002/adma.201506292

    Article  Google Scholar 

  110. Z. Ni, C. Bao, Y. Liu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science (80) 367, 1352–1358 (2020). https://doi.org/10.1126/science.aba0893

  111. Z. Yang, Y. Deng, X. Zhang et al., High-performance single-crystalline perovskite thin-film photodetector. Adv. Mater. 30(2018). https://doi.org/10.1002/adma.201704333

  112. M. Chen, X. Shan, T. Geske et al., Manipulating ion migration for highly stable light-emitting diodes with single-crystalline organometal halide perovskite microplatelets. ACS Nano 11, 6312–6318 (2017). https://doi.org/10.1021/acsnano.7b02629

    Article  Google Scholar 

  113. X. Li, K. Wang, M. Chen et al., Stable whispering gallery mode lasing from solution-processed formamidinium lead bromide perovskite microdisks. Adv. Opt. Mater. 8(2020). https://doi.org/10.1002/adom.202000030

  114. A. Jancik Prochazkova, Y. Salinas, C. Yumusak et al., Controlling quantum confinement in luminescent perovskite nanoparticles for optoelectronic devices by the addition of water. ACS Appl. Nano Mater. 3, 1242–1249 (2020). https://doi.org/10.1021/acsanm.9b01857

    Article  Google Scholar 

  115. N.K. Tailor, S. Satapathi, The impact of Cs3Bi2Cl9 single crystal growth modality on its symmetry and morphology. J. Mater. Res. Technol. 9, 7149–7157 (2020). https://doi.org/10.1016/j.jmrt.2020.04.097

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirat Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathee, N., Ray, N. (2023). Optical Properties of Metal Oxide-Based Perovskite Structures. In: Kumar, V., Ayoub, I., Sharma, V., Swart, H.C. (eds) Optical Properties of Metal Oxide Nanostructures . Progress in Optical Science and Photonics, vol 26. Springer, Singapore. https://doi.org/10.1007/978-981-99-5640-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5640-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5639-5

  • Online ISBN: 978-981-99-5640-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics