Skip to main content
Log in

Redox-responsive ferrocene-containing poly(ionic liquid)s for antibacterial applications

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Ferrocene (Fc)-containing imidazolium type ionic liquids (ILs) and corresponding poly(ionic liquid) (PIL) membranes with tunable antibacterial activity based on electrochemical redox reaction and host-guest chemistry were developed. The effect of Fc moiety on the antimicrobial activities against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was studied by minimum inhibitory concentration (MIC). The presence of Fc groups highly enhanced the antibacterial efficiency of Fccontaining ILs because of the generation of reactive oxygen species (ROS). The electrochemical oxidation of Fc to Fc+ and the formation of inclusion complexes between Fc and β-CD via host-guest interactions decreased the antibacterial activities of ILs and PIL membranes. The antibacterial activities may be recovered in some extent upon the electrochemical reduction of Fc+ to Fc or the exclusion of the Fc out of the cavity of β-CD. Furthermore, all the Fc-containing PIL membranes showed relatively low hemolysis activities and none cytotoxicity toward human cells, indicating clinical feasibility in topical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ng VWL, Ke X, Lee ALZ, Hedrick JL, Yang YY. Adv Mater, 2013, 25: 6730–6736

    Article  CAS  PubMed  Google Scholar 

  2. Tao WX, Zhu MH, Deng ZX, Sun YH. Sci China Chem, 2013, 56: 1364–1371

    Article  CAS  Google Scholar 

  3. Miller AJM, Heinekey DM, Mayer JM, Goldberg KI. Angew Chem Int Ed, 2013, 52: 3981–3984

    Article  CAS  Google Scholar 

  4. Sun Y, Sun G. Macromolecules, 2002, 35: 8909–8912

    Article  CAS  Google Scholar 

  5. Jin JY, Ouyang XY, Li JS, Jiang JH, Wang H, Wang YX, Yang RH. Sci China Chem, 2011, 54: 1266–1272

    Article  CAS  Google Scholar 

  6. Shah P, Yue Q, Zhu X, Xu F, Wang HS, Li CZ. Sci China Chem, 2015, 58: 1600–1604

    Article  CAS  Google Scholar 

  7. Qin J, Guo J, Xu Q, Zheng Z, Mao H, Yan F. ACS Appl Mater Interfaces, 2017, 9: 10504–10511

    Article  CAS  PubMed  Google Scholar 

  8. Zheng Z, Xu Q, Guo J, Qin J, Mao H, Wang B, Yan F. ACS Appl Mater Interfaces, 2016, 8: 12684–12692

    Article  CAS  PubMed  Google Scholar 

  9. Cui H, Yuan L, Lin L. Carbohydr Polymers, 2017, 177: 156–164

    Article  CAS  Google Scholar 

  10. Zhang J, He X, Zhang P, Ma Y, Ding Y, Wang Z, Zhang Z. Sci China Chem, 2015, 58: 761–767

    Article  CAS  Google Scholar 

  11. Long Y, Wang Y, Liu Y, Zeng Q, Li Y. Sci China Chem, 2015, 58: 666–672

    Article  CAS  Google Scholar 

  12. Wang L, Su B, Cheng C, Ma L, Li S, Nie S, Zhao C. J Mater Chem B, 2014, 3: 1391–1404

    Article  CAS  Google Scholar 

  13. Yang Z, Yu H, Zhang L, Wei H, Xiao Y, Chen L, Guo H. Chem Asian J, 2014, 9: 313–318

    Article  CAS  PubMed  Google Scholar 

  14. Sundararaman M, Rajesh Kumar R, Venkatesan P, Ilangovan A. J Med Microbiol, 2013, 62: 241–248

    Article  CAS  PubMed  Google Scholar 

  15. Huang Y, Pappas HC, Zhang L, Wang S, Cai R, Tan W, Wang S, Whitten DG, Schanze KS. Chem Mater, 2017, 29: 6389–6395

    Article  CAS  Google Scholar 

  16. Chait R, Craney A, Kishony R. Nature, 2007, 446: 668–671

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Q, Lambert G, Liao D, Kim H, Robin K, Tung C, Pourmand N, Austin RH. Science, 2011, 333: 1764–1767

    Article  CAS  PubMed  Google Scholar 

  18. Huang Z, Zhang H, Bai H, Bai Y, Wang S, Zhang X. ACS Macro Lett, 2016, 5: 1109–1113

    Article  CAS  Google Scholar 

  19. Bai H, Zhang H, Hu R, Chen H, Lv F, Liu L, Wang S. Langmuir, 2017, 33: 1116–1120

    Article  CAS  PubMed  Google Scholar 

  20. Bai H, Fu X, Huang Z, Lv F, Liu L, Zhang X, Wang S. Chemistryselect, 2017, 2: 7940–7945

    Article  CAS  Google Scholar 

  21. Bai H, Yuan H, Nie C, Wang B, Lv F, Liu L, Wang S. Angew Chem Int Ed, 2015, 54: 13208–13213

    Article  CAS  Google Scholar 

  22. Wei T, Zhan W, Cao L, Hu C, Qu Y, Yu Q, Chen H. ACS Appl Mater Interfaces, 2016, 8: 30048–30057

    Article  CAS  PubMed  Google Scholar 

  23. Subianto S, Mistry MK, Choudhury NR, Dutta NK, Knott R. ACS Appl Mater Interfaces, 2009, 1: 1173–1182

    Article  CAS  PubMed  Google Scholar 

  24. Mehta MJ, Kumar A. Chem Asian J, 2017, 12: 3150–3155

    Article  CAS  PubMed  Google Scholar 

  25. Chin W, Yang C, Ng VWL, Huang Y, Cheng J, Tong YW, Coady DJ, Fan W, Hedrick JL, Yang YY. Macromolecules, 2013, 46: 8797–8807

    Article  CAS  Google Scholar 

  26. Szente L, Puskás I, Csabai K, Fenyvesi É. Chem Asian J, 2014, 9: 1365–1372

    Article  CAS  PubMed  Google Scholar 

  27. Sun Z, Liu X, Guo J, Xu D, Shen S, Yan F. Chem Asian J, 2017, 12: 2950–2955

    Article  CAS  PubMed  Google Scholar 

  28. Wang XC, Wu JY, Zhou HP, Tian YP, Li L, Yang JX, Jin BK, Zhang SY. Sci China Ser B-Chem, 2009, 52: 930–936

    Article  CAS  Google Scholar 

  29. Li SH, Wu CY, Lv XY, Tang X, Zhao XQ, Yan H, Jiang H, Wang XM. Sci China Chem, 2012, 55: 2388–2395

    Article  CAS  Google Scholar 

  30. Li SH, Wu CY, Tang X, Gao SP, Zhao XQ, Yan H, Wang XM. Sci China Chem, 2013, 56: 595–603

    Article  CAS  Google Scholar 

  31. Xu G, Pranantyo D, Xu L, Neoh KG, Kang ET, Teo SLM. Ind Eng Chem Res, 2016, 55: 10906–10915

    Article  CAS  Google Scholar 

  32. Lewandowski EM, Szczupak Ł, Wong S, Skiba J, Guśpiel A, Solecka J, Vrček V, Kowalski K, Chen Y. Organometallics, 2017, 36: 1673–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Savjani KT, Gajjar AK, Savjani JK. ISRN Pharm, 2012, 2012: 1–10

    Google Scholar 

  34. Chaudhary VB, Patel JK. Int J Pharm Sci Res, 2013, 4: 68–76

    CAS  Google Scholar 

  35. Kumar S, Bhargava D, Thakkar A, Arora S. Crit Rev Ther Drug Carrier Syst, 2013, 30: 217–256

    Article  CAS  PubMed  Google Scholar 

  36. Svenson S, Chauhan AS. Nanomedicine, 2008, 3: 679–702

    Article  CAS  PubMed  Google Scholar 

  37. Yuan C, Guo J, Tan M, Guo M, Qiu L, Yan F. ACS Macro Lett, 2014, 3: 271–275

    Article  CAS  Google Scholar 

  38. Cao D, Liu W, Wei X, Xu F, Cui L, Cao Y. Tissue Eng, 2006, 12: 1369–1377

    Article  CAS  PubMed  Google Scholar 

  39. Locock KES, Michl TD, Stevens N, Hayball JD, Vasilev K, Postma A, Griesser HJ, Meagher L, Haeussler M. ACS Macro Lett, 2014, 3: 319–323

    Article  CAS  Google Scholar 

  40. Pu F, Liu X, Xu B, Ren J, Qu X. Chem Eur J, 2012, 18: 4322–4328

    Article  CAS  PubMed  Google Scholar 

  41. Li P, Zhou C, Rayatpisheh S, Ye K, Poon YF, Hammond PT, Duan H, Chan-Park MB. Adv Mater, 2012, 24: 4130–4137

    Article  CAS  PubMed  Google Scholar 

  42. Gabriel GJ, Som A, Madkour AE, Eren T, Tew GN. Mater Sci Eng-RRep, 2007, 57: 28–64

    Article  CAS  Google Scholar 

  43. Fischer W. Med Microbiol Immunol, 1994, 183: 61–76

    Article  CAS  PubMed  Google Scholar 

  44. Patra M, Gasser G, Wenzel M, Merz K, Bandow JE, Metzler-Nolte N. Organometallics, 2010, 29: 4312–4319

    Article  CAS  Google Scholar 

  45. Beveridge TJ. J Bacteriol, 1999, 181: 4725–4733

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Palermo EF, Sovadinova I, Kuroda K. Biomacromolecules, 2009, 10: 3098–3107

    Article  CAS  PubMed  Google Scholar 

  47. Acevedo-Morantes CY, Melendez E, Singh SP, Ramirez-Vick JE. J Cancer Sci Ther, 2012, 4: 271–275

    CAS  Google Scholar 

  48. Nakahata M, Takashima Y, Yamaguchi H, Harada A. Nat Commun, 2011, 2: 511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin B, Qiu L, Lu J, Yan F. Chem Mater, 2010, 22: 6718–6725

    Article  CAS  Google Scholar 

  50. Nederberg F, Zhang Y, Tan JPK, Xu K, Wang H, Yang C, Gao S, Guo XD, Fukushima K, Li L, Hedrick JL, Yang YY. Nat Chem, 2011, 3: 409–414

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation for Distinguished Young Scholars (21425417), the National Natural Science Foundation of China (21704071), the Jiangsu Province Science Foundation for Youth (BK20170332), General Program Foundation of Jiangsu Province University Science Research Project (17KJB150033), General Program Foundation of Shanghai Municipal Commission of Health and Family Planning (201740107), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Science and Technology Innovation Fund Project of Zhongshan Hospital, Fudan University (2017ZSCX03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hailei Mao or Feng Yan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Guo, J., Ding, Y. et al. Redox-responsive ferrocene-containing poly(ionic liquid)s for antibacterial applications. Sci. China Chem. 62, 95–104 (2019). https://doi.org/10.1007/s11426-018-9348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9348-5

Keywords

Navigation