Skip to main content
Log in

Biosynthesis of tetronate antibiotics: A growing family of natural products with broad biological activities

  • Reviews
  • Special Topic Chemistry for Life Sciences
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Tetronate antibiotics, a growing family of natural products featuring a characteristic tetronic acid moiety, are of importance and of particular interest for their typical structures, especially the spirotetronate structure, and corresponding versatile biological activities. Considerable efforts have persistently performed since the first tetronate was isolated, to elucidate the biosynthesis of natural tetronate products, by isotope-labeled feeding experiments, genetical characterization of biosynthetic gene clusters, and biochemical reconstitution of key enzymatic catalyzed reactions. Accordingly, the biosynthesis of spirotetronates has been gradually determined, including biosynthesis of a polyketide-derived backbone for spirotetronate aglycone, incorporation of a glycerol-derived three-carbon unit into tetronic acid moiety, formation of mature aglycone via Diels-Alder-like reaction, and decorations of aglycone with various deoxysugar moieties. In this paper, the biosynthetic investigations of natural tetronates are well documented and a common biosynthetic route for this group of natural products is summarized accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod, 2007, 70:461–477

    Article  CAS  Google Scholar 

  2. Keller S, Nicholson G, Drahl C, Sorensen E, Fiedler HP, Süssmuth RD. Abyssomicins G and H and atrop-abyssomicin C from the marine Verrucosispora strain AB-18-032. J Antibiot, 2007, 60:391–394

    Article  CAS  Google Scholar 

  3. Nakashima T, Miura M, Hara M. Tetrocarcin A inhibits mitochondrial functions of Bcl-2 and suppresses its anti-apoptotic activity. Cancer Res, 2000, 60:1229–1235

    CAS  Google Scholar 

  4. Tinhofer I, Anether G, Senfter M, Pfaller K, Bernhard D, Hara M, Greil R. Stressful death of T-ALL tumor cells after treatment with the anti-tumor agent Tetrocarcin A. FASEB J, 2002, 16:1295–1297

    CAS  Google Scholar 

  5. Bradner WT, Claridge CA, Huftalen JB. Antitumor activity of kijanimicin. J Antibiot, 1983, 36:1078–1079

    Article  CAS  Google Scholar 

  6. Waitz JA, Horan AC, Kalyanpur M, Lee BK, Loebenberg D, Marquez JA, Miller G, Patel MG. Kijanimicin (Sch 25663), a novel antibiotic produced by Actinomadura kijaniata SCC 1256. Fermentation, isolation, characterization and biological properties. J Antibiot, 1981, 34:1101–1106

    Article  CAS  Google Scholar 

  7. Muntwyler R, Keller-Schierlein W. Metabolic products of microorganisms. 107. Structure of chlorothricin, a new macrolide antibiotic. Helv Chim Acta, 1972, 55:2071–2094

    Article  Google Scholar 

  8. Brufani M, Cerrini S, Fedeli W, Mazza F, Muntwyler R. Metabolic products of microorganisms. 108. Crystal structure analysis chlorothricolide methyl ester. Helv Chim Acta, 1972, 55:2094–2102

    Article  CAS  Google Scholar 

  9. Schindler PW, Zahner H. Mode of action of the macrolide-type antibiotic, chlorothricin, kinetic study of the inhibition of pyruvate carboxylase from Bacullus stearothermophilus. Eur J Biochem, 1973, 39:591–600

    Article  CAS  Google Scholar 

  10. Hegde VR, Patel MG, Das PR, Pramanik B, Puar MS. A family of novel macrocyclic lactones, the saccharocarcins produced by Saccharothrix aerocolonigenes subsp. antibiotica. II. Physico-chemical properties and structure determination. J Antibiot, 1997, 50:126–134

    Article  CAS  Google Scholar 

  11. Park HR, Chijiwa S, Furihata K, Hayakawa Y, Shin-Ya K. Relative and absolute configuration of versipelostatin, a down-regulator of molecular chaperone GRP78 expression. Org Lett, 2007, 9:1457–1460

    Article  CAS  Google Scholar 

  12. Igarashi Y, Takagi K, Kan Y, Fujii K, Harada K, Furumai T, Oki T. Arisostatins A and B, new members of tetrocarcin class of antibiotics from Micromonospora sp. TP-A0316. II. Structure determination. J Antibiot, 2000, 53:233–240

    Article  CAS  Google Scholar 

  13. Jiang ZD, Jensen PR, Fenical W. Lobophorins A and B, new antiinflammatory macrolides produced by a tropical marine bacterium. Bioorg Med Chem Lett, 1999, 9:2003–2006

    Article  CAS  Google Scholar 

  14. Hamaguchi T, Sudo T, Osada H. RK-682, a potent inhibitor of tyrosine phosphatase, arrested the mammalian cell cycle progression at G1phase. FEBS Lett, 1995, 372:54–58

    Article  CAS  Google Scholar 

  15. Terui Y, Sakazaki R, Shoji J. Structures of agglomerins. J Antibiot, 1990, 43:1245–1253

    Article  CAS  Google Scholar 

  16. Keller-Juslén C, King HD, Kuhn M, Loosli HR, Pache W, Petcher TJ, Weber HP, von Wartburg A. Tetronomycin, a novel polyether of unusual structure. J Antibiot, 1982, 35:142–150

    Article  Google Scholar 

  17. Newbold CJ, Wallace RJ, Watt ND, Richardson AJ. Effect of the novel ionophore tetronasin (ICI 139603) on ruminal microorganisms. Appl Environ Microbiol, 1988, 54:544–547

    CAS  Google Scholar 

  18. Liu Y, Zhang S, Jung JH, Xu T. Variabilin, a chemotaxonomic marker for the family Irciniidae. Z Naturforsch C, 2007, 62:473–476

    CAS  Google Scholar 

  19. Serra T, Polónia J. Isolation of pinastric acid and ergosterol from Parmelia caperata (L.) Arch. J Pharm Sci, 1976, 65:737–738

    Article  CAS  Google Scholar 

  20. Takeda K, Kawanishi E, Nakamura H, Yoshii E. Total synthesis of tetronolide, the aglycon of tetroncarcins. Tetrahedron Lett, 1991, 32:4925–4928

    Article  CAS  Google Scholar 

  21. Roush WR, Scitti RJ. Enantioselective total synthesis of (−)-chloro-thricolide. J Am Chem Soc, 1994, 116:6457–6458

    Article  CAS  Google Scholar 

  22. Jia XY, Tian ZH, Shao L, Qu XD, Zhao QF, Tang J, Tang GL, Liu W. Genetic characterization of the chlorothricin gene cluster as a model for spirotetronate antibiotic biosynthesis. Chem Biol, 2006, 13:575–585

    Article  CAS  Google Scholar 

  23. Zhang H, White-Phillip JA, Melançon CE 3rd, Kwon HJ, Yu WL, Liu HW. Elucidation of the kijanimicin gene cluster: Insights into the biosynthesis of spirotetronate antibiotics and nitrosugars. J Am Chem Soc, 2007, 129:14670–14683

    Article  CAS  Google Scholar 

  24. Demydchuk Y, Sun Y, Hong H, Staunton J, Spencer JB, Leadlay PF. Analysis of the tetronomycin gene cluster: Insights into the biosynthesis of a polyether tetronate antibiotic. Chembiochem, 2008, 9:1136–1145

    Article  CAS  Google Scholar 

  25. Fang J, Zhang Y, Huang L, Jia X, Zhang Q, Zhang X, Tang G, Liu W. Cloning and characterization of the tetrocarcin A gene cluster from Micromonospora chalcea NRRL 11289 reveals a highly conserved strategy for tetronate biosynthesis in spirotetronate antibiotics. J Bacteriol, 2008, 190:6014–6125

    Article  CAS  Google Scholar 

  26. Sun Y, Hahn F, Demydchuk Y, Chettle J, Tosin M, Osada H, Leadlay PF. In vitro reconstruction of tetronate RK-682 biosynthesis. Nat Chem Biol, 2010, 6:99–101

    Article  CAS  Google Scholar 

  27. Gottardi EM, Krawczyk JM, von Suchodoletz H, Schadt S, Mühlenweg A, Uguru GC, Pelzer S, Fiedler HP, Bibb MJ, Stach JE, Süssmuth RD. Abyssomicin biosynthesis: Formation of an unusual polyketide, antibiotic-feeding studies and genetic analysis. Chembiochem, 2011, 12:1401–1410

    Article  CAS  Google Scholar 

  28. He HY, Pan HX, Wu LF, Zhang BB, Chai HB, Liu W, Tang GL. Quartromicin biosynthesis: Two alternative polyketide chains produced by one polyketide synthase assembly line. Chem Biol, 2012, 19:1313–1323

    Article  CAS  Google Scholar 

  29. Li S, Xiao J, Zhu Y, Zhang G, Yang C, Zhang H, Ma L, Zhang C. Dissecting glycosylation steps in lobophorin biosynthesis implies an iterative glycosyltransferase. Org Lett, 2013, 15:1374–1377

    Article  CAS  Google Scholar 

  30. Kanchanabanca C, Tao WX, Hong H, Liu YJ, Hahn F, Samborskyy M, Deng ZX, Sun YH, Leadlay PF. Unusual acetylation-elimination in the formation of tetronate antibiotics. Angew Chem Int Ed, 2013, 52:5785–5788

    Article  CAS  Google Scholar 

  31. Schobert R, Schlenk A. Tetramic and tetronic acids: An update on new derivatives and biological aspects. Bioorg Med Chem, 2008, 16:4203–4221

    Article  CAS  Google Scholar 

  32. Holzbach R, Pape H, Hook D, Kreutzer EF, Chang C, Floss HG. Biosynthesis of the macrolide antibiotic chlorothricin: Basic building blocks. Biochemistry, 1978, 17:556–560

    Article  CAS  Google Scholar 

  33. Mascaretti OA, Chang C, Hook D, Otsuka H, Kreuzer EF, Floss HG. Biosynthesis of the macrolide antibiotic chlorothricin. Biochemistry, 1981, 20:919–924

    Article  CAS  Google Scholar 

  34. Tamaoki T, Tomita F. Biosynthesis of tetrocarcin. Incorporation of 14C- and 13C-labeled compounds into tetrocarcin. J Antibiot, 1983, 36:595–598

    Article  CAS  Google Scholar 

  35. Chijiwa S, Park HR, Furihata K, Ogata M, Endo T, Kuzuyama T, Hayakawa Y, Shin-ya K. Biosynthetic studies of versipelostatin, a novel 17-membered α-tetronic acid involved macrocyclic compound isolated from Streptomyces versipellis. Tetrahedron Lett, 2003, 44:5897–5900

    Article  CAS  Google Scholar 

  36. Sekiyama Y, Araya H, Hasumi K, Endo A, Fujimoto Y. Biosynthesis of acaterin: Incorporation of glycerol into the C3 branched unit. Tetrahedron Lett, 1998, 39:6233–6236

    Article  CAS  Google Scholar 

  37. Mashimo Y, Sekiyama Y, Araya H, Fujimoto Y. Biosynthesis of agglomerin A: Stereospecific incorporation of pro-R- and pro-S-hydrogens at sn-C-3 of glycerol into the branched C3 moiety. Bioorg Med Chem Lett, 2004, 14:649–651

    Article  CAS  Google Scholar 

  38. Sekiyama Y, Fujimoto Y, Hasumi K, Endo A. Biosynthesis of acaterin: Coupling of C5 unit with octanoate. J Org Chem, 2001, 66:5649–5654

    Article  CAS  Google Scholar 

  39. Weymouth-Wilson AC. The role of carbohydrates in biologically active natural products. Nat Prod Rep, 1997, 14:99–110

    Article  CAS  Google Scholar 

  40. Kirschning A, Bechthold FW, Rohr J. Chemical and biochemical aspects of deoxysugars and deoxysugar oligosaccharides. Top Curr hem, 1997, 188:1–84

    Article  CAS  Google Scholar 

  41. Kaneko M, Nakashima T, Uosaki Y, Hara M, Ikeda S, Kanda Y. Synthesis of tetrocarcin derivatives with specific inhibitory activity towards Bcl-2 functions. Bioorg Med Chem Lett, 2001, 11:887–890

    Article  CAS  Google Scholar 

  42. Biggins JB, Ternei MA, Brady SF. Malleilactone, a polyketide synthase-derived virulence factor encoded by the cryptic secondary metabolome of Burkholderia pseudomallei group pathogens. J Am Chem Soc, 2012, 134:13192–13195

    Article  CAS  Google Scholar 

  43. Franke J, Ishida K, Hertweck C. Genomics-driven discovery of burkholderic acid, a noncanonical, cryptic polyketide from human pathogenic Burkholderia species. Angew Chem Int Ed, 2012, 51:11611–11615

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuHui Sun.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, W., Zhu, M., Deng, Z. et al. Biosynthesis of tetronate antibiotics: A growing family of natural products with broad biological activities. Sci. China Chem. 56, 1364–1371 (2013). https://doi.org/10.1007/s11426-013-4921-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4921-x

Keywords

Navigation