Skip to main content
Log in

Controlled fabrication and microwave absorbing mechanism of hollow Fe3O4@C microspheres

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Uniform core-shell SiO2@Fe3O4@C microspheres were prepared by a one-step hydrothermal method with SiO2 microspheres as the template, and the hollow Fe3O4@C (HFC) microspheres were achieved via etching SiO2 template. By changing the sizes of SiO2 microspheres, a series of HFC microspheres with variable cavity sizes were obtained to study the relationship between cavity size and microwave absorbing (MA) performance for the first time. The morphology and structure of samples were characterized in detail. The results showed that the MA performance of HFC sample depended on its cavity size. In particular, the hollow structure was good for improving MA performance and could make MA move to the high-frequency region. More importantly, as the cavity size increases, the resonance frequency of HFC-i (i=1, 2, 3, 4) samples moved to a low frequency, and the optimal matching thickness of HFC-i samples was increasing. Among all HFC-i samples, HFC-3 showed the most excellent MA performance, which could be mainly explained by the quarter-wavelength matching model, intrinsical magnetic and dielectric loss. Furthermore, the MA performance of HFC mixture blended by the equal mass fraction of HFC-2, HFC-3 and HFC-4 was the comprehensive results of three HFC-i samples. All the above suggested that the cavity size in HFC sample had a great influence on the MA performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lv Y, Yu L, Li C, Yang L. Sci China Chem, 2016, 59: 142–149

    Article  CAS  Google Scholar 

  2. Liu Z, Lu G, Yin H, Dang Z, Rittmann B. Environ Sci Technol, 2015, 49: 5288–5300

    Article  CAS  Google Scholar 

  3. Zeng Z, Jin H, Chen M, Li W, Zhou L, Zhang Z. Adv Funct Mater, 2016, 26: 303–310

    Article  CAS  Google Scholar 

  4. Kar GP, Biswas S, Rohini R, Bose S. J Mater Chem A, 2015, 3: 7974–7985

    Article  CAS  Google Scholar 

  5. Liu JW, Xu JJ, Liu ZW, Liu XL, Che RC. Sci China Chem, 2014, 57: 3–12

    Article  CAS  Google Scholar 

  6. Fang J, Liu T, Chen Z, Wang Y, Wei W, Yue X, Jiang Z. Nanoscale, 2016, 8: 8899–8909

    Article  CAS  Google Scholar 

  7. Zhao B, Shao G, Fan B, Wang C, Xie Y, Zhang R. Powder Technol, 2015, 270: 20–26

    Article  CAS  Google Scholar 

  8. Zhu W, Wang L, Zhao R, Ren J, Lu G, Wang Y. Nanoscale, 2011, 3: 2862–2864

    Article  CAS  Google Scholar 

  9. Sözeri H, Mehmedi Z, Kavas H, Baykal A. Ceram Int, 2015, 41: 9602–9609

    Article  Google Scholar 

  10. Zeng M, Liu J, Yue M, Yang HZ, Dong HR, Tang WK, Jiang H, Liu XF, Yu RH. J Appl Phys, 2015, 117: 17B527

    Article  Google Scholar 

  11. Shen JH, Chen KY, Li LC, Ding Y, Li JB, Kong WQ. Sci China Tech Sci, 2014, 57: 1858–1864

    Article  CAS  Google Scholar 

  12. Venkatachalam S, Bertin D, Ducournau G, Lampin JF, Hourlier D. Carbon, 2016, 100: 158–164

    Article  CAS  Google Scholar 

  13. Lee SE, Lee WJ, Oh KS, Kim CG. Carbon, 2016, 107: 564–572

    Article  CAS  Google Scholar 

  14. Chen Y, Zhang W, Yang S, Hobiny A, Alsaedi A, Wang X. Sci China Chem, 2016, 59: 412–419

    Article  CAS  Google Scholar 

  15. Shen J, Chen K, Li L, Wang W, Jin Y. J Alloy Compd, 2014, 615: 488–495

    Article  CAS  Google Scholar 

  16. Yu L, Liu Y, Yang F, Evans J, Rodriguez JA, Liu P. J Phys Chem C, 2015, 119: 16614–16622

    Article  CAS  Google Scholar 

  17. Shen J, Feng J, Li L, Tong G, He Y. J Alloy Compd, 2015, 632: 490–499

    Article  CAS  Google Scholar 

  18. Yuan K, Che R, Cao Q, Sun Z, Yue Q, Deng Y. ACS Appl Mater Interfaces, 2015, 7: 5312–5319

    Article  CAS  Google Scholar 

  19. Zhao B, Shao G, Fan B, Zhao W, Xie Y, Zhang R. J Mater Chem A, 2015, 3: 10345–10352

    Article  CAS  Google Scholar 

  20. Li Y, Wu T, Jiang K, Tong G, Jin K, Qian N, Zhao L, Lv T. J Mater Chem C, 2016, 4: 7119–7129

    Article  CAS  Google Scholar 

  21. Panigrahi R, Srivastava SK. Sci Rep, 2015, 5: 7638

    Article  Google Scholar 

  22. Lv H, Ji G, Liu W, Zhang H, Du Y. J Mater Chem C, 2015, 3: 10232–10241

    Article  CAS  Google Scholar 

  23. Han M, Yin X, Kong L, Li M, Duan W, Zhang L, Cheng L. J Mater Chem A, 2014, 2: 16403–16409

    Article  CAS  Google Scholar 

  24. Zhang Y, Huang Y, Zhang T, Chang H, Xiao P, Chen H, Huang Z, Chen Y. Adv Mater, 2015, 27: 2049–2053

    Article  CAS  Google Scholar 

  25. Moyer JA, Gao R, Schiffer P, Martin LW. Sci Rep, 2015, 5: 10363

    Article  CAS  Google Scholar 

  26. Sun X, He J, Li G, Tang J, Wang T, Guo Y, Xue H. J Mater Chem C, 2013, 1: 765–777

    Article  CAS  Google Scholar 

  27. Shen J, Ma G, Zhang J, Quan W, Li L. Appl Surface Sci, 2015, 359: 455–468

    Article  CAS  Google Scholar 

  28. Sato T, Iijima T, Seki M, Inagaki N. J Magn Magn Mater, 1987, 65: 252–256

    Article  CAS  Google Scholar 

  29. Wen F, Zhang F, Liu Z. J Phys Chem C, 2011, 115: 14025–14030

    Article  CAS  Google Scholar 

  30. Hsiao YC, Wu T, Zang H, Li M, Hu B. Sci China Chem, 2015, 58: 239–247

    Article  CAS  Google Scholar 

  31. Huang Y, Wang Y, Li Z, Yang Z, Shen C, He C. J Phys Chem C, 2014, 118: 26027–26032

    Article  CAS  Google Scholar 

  32. Jazirehpour M, Seyyed Ebrahimi SA. J Alloy Compd, 2015, 639: 280–288

    Article  CAS  Google Scholar 

  33. Zhao B, Zhao W, Shao G, Fan B, Zhang R. ACS Appl Mater Interfaces, 2015, 7: 12951–12960

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20104017), and the College Students’ Science and Technology Innovation Activities Plan of Zhejiang (2014R404056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangchao Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Yuan, H., Chen, H. et al. Controlled fabrication and microwave absorbing mechanism of hollow Fe3O4@C microspheres. Sci. China Chem. 60, 740–747 (2017). https://doi.org/10.1007/s11426-016-9001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-9001-5

Keywords

Navigation