Skip to main content
Log in

Which is the determinant for cellulose degradation in cooperative ionic liquid pairs: dissolution or catalysis?

  • Articles
  • SPECIAL TOPIC • Ionic Liquids: Energy, Materials & Environment
  • Published:
Science China Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Catalytic conversion of sustainable cellulose to the value-added chemicals and high quality biofuel has been recognized as a perfect approach for the alleviation of the dependence on the non-renewable fossil resources. Previously, we successfully designed and explored novel and efficient cooperative ionic liquid pairs for this renewable material, which has advantages of high reactor efficiency than current technologies because of the dissolution and in situ catalytic decomposition mechanism. Here, the determinant of this process is further studied by the intensive investigation on the relationship between the cellulose conversion and the properties of ionic liquid catalyst and solvent. Scanning electron microscope (SEM), thermogravimetric analysis (TG) and elemental analysis were used for the comparative characterization of raw cellulose and the residues. The results demonstrate that this consecutive dissolution and in situ catalysis process is much more dependent on the dissolution capability of ionic liquid solvent, while comparatively, the effect of in situ acid catalysis is relatively insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klemm D, Heublein B, Fink HP, Bohn A. Angew Chem Int Ed, 2005, 44: 3358–3393

    Article  CAS  Google Scholar 

  2. Klemm D, Schmauder HP, Heinze T. Cellulose. In: Vandamme E, De Beats S, Steinbüchel A, Eds. Biopolymers: Biology, Chemistry, Biotechnology, Applications, Polysaccharide II. Weinheim: Wiley-VCH, 2002

  3. Ummartyotin S, Manuspiya H. Renew Sust Energ Rev, 2015, 50: 204–213

    Article  CAS  Google Scholar 

  4. Van de Vyver S, Geboers J, Jacobs PA, Sels BF. Chemcatchem, 2011, 3: 82–94

    Article  Google Scholar 

  5. Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R. Chem Rev, 2011, 111: 397–417

    Article  CAS  Google Scholar 

  6. Corma A, Iborra S, Velty A. Chem Rev, 2007, 107: 2411–2502

    Article  CAS  Google Scholar 

  7. Zhao H, Holladay JE, Brown H, Zhang ZC. Science, 2007, 316: 1597–1600

    Article  CAS  Google Scholar 

  8. Ryu S, Labbe N, Trinh CT. Appl Microbiol Biotechnol, 2015, 99: 4237–4244

    Article  CAS  Google Scholar 

  9. Ma H, Long JX, Wang FR, Wang LF, Li XH. Acta Phys Chim Sin, 2015, 31: 973–979

    CAS  Google Scholar 

  10. Deng W, Zhang Q, Wang Y. Sci China Chem, 2015, 58: 29–46

    Article  CAS  Google Scholar 

  11. Jarvis M. Nature, 2003, 426: 611–612

    Article  CAS  Google Scholar 

  12. Long JX, Yuan ZQ, Ma H, Shu RY, Li XH. Acta Phys Chim Sin, 2015, 31: 337–343

    CAS  Google Scholar 

  13. He H, Zheng Y, Chen H, Zhang X, Yao X, Zhang S. Sci China Chem, 2012, 55: 1548–1556

    Article  CAS  Google Scholar 

  14. Lee SG. Chem Commun, 2006, 10: 1049–1063

    Article  Google Scholar 

  15. Hallett JP, Welton T. Chem Rev, 2011, 111: 3508–3576

    Article  CAS  Google Scholar 

  16. Swatloski RP, Spear SK, Holbrey JD, Rogers RD. J Am Chem Soc, 2002, 124: 4974–4975

    Article  CAS  Google Scholar 

  17. Andanson JM, Padua AAH, Gomes MFC. Chem Commun, 2015, 51: 4485–4487

    Article  CAS  Google Scholar 

  18. de Oliveira HFN, Rinaldi R. ChemSusChem, 2015, 8: 1577–1584

    Article  Google Scholar 

  19. Long JX, Guo B, Li XH, Wang FR, Wang LF. Acta Phys Chim Sin, 2011, 27: 995–999

    CAS  Google Scholar 

  20. Long J, Li X, Wang L, Zhang N. Sci China Chem, 2012, 55: 1500–1508

    Article  CAS  Google Scholar 

  21. Zhang S, Sun J, Zhang X, Xin J, Miao Q, Wang J. Chem Soc Rev, 2014, 43: 7838–7869

    Article  CAS  Google Scholar 

  22. Long J, Guo B, Li X, Jiang Y, Wang F, Tsang SC, Wang L, Yu KMK. Green Chem, 2011, 13: 2334–2338

    Article  CAS  Google Scholar 

  23. Long J, Li X, Guo B, Wang F, Yu Y, Wang L. Green Chem, 2012, 14: 1935–1941

    Article  CAS  Google Scholar 

  24. Pinkert A, Marsh KN, Pang SS, Staiger MP. Chem Rev, 2009, 109: 6712–6728

    Article  CAS  Google Scholar 

  25. Liu S, Tang L, Long J, Guan J, Li X. Catal Today, 2016, 264: 75–82

    Article  CAS  Google Scholar 

  26. Zhao Y L, Liu XM, Wang JJ, Zhang SJ. Carbohydr Polym, 2013, 94: 723–730

    Article  CAS  Google Scholar 

  27. Wen JL, Yuan TQ, Sun SL, Xu F, Sun RC. Green Chem, 2014, 16: 181–190

    Article  CAS  Google Scholar 

  28. Zhang X, Wang T, Ma L, Zhang Q, Jiang T. Bioresour Technol, 2013, 127: 306–311

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinxing Long or Xuehui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, J., Zhang, Y., Wang, L. et al. Which is the determinant for cellulose degradation in cooperative ionic liquid pairs: dissolution or catalysis?. Sci. China Chem. 59, 557–563 (2016). https://doi.org/10.1007/s11426-016-5586-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-5586-z

Keywords

Navigation