Skip to main content
Log in

Ionic liquids: Efficient solvent and medium for the transformation of renewable lignocellulose

  • Reviews
  • Special Issue · Ionic Liquid and Green Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Carbon-enriched lignocelluloses are regarded as the perfect alternative for nonrenewable fossil fuel, and have a great potential to alleviate the increasing energy crisis and climate change. However, the tightly covalent structure and strong intra and inter-molecular hydrogen bonding in lignocellulose make it high recalcitrance to transformation due to the poor solubility in water or common organic solvents. Dissolution and transformation of lignocellulose and its constituents in ionic liquids have therefore attracted much attention recently due to the tunable physical-chemical properties. Here, ionic liquids with excellent dissolving capability for biomass and its ingredients were examined. The technologies for lignocellulose biorefining in the presence of ionic liquid solvents or catalysts were also summarized. Some pertinent suggestions for the future catalytic conversion and unitization of this sustained carbon-rich resource are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grassian VH, Meyer G, Abruna H, Coates GW, Achenie LE, Allison T, Brunschwig B, Ferry J, Garcia-Garibay M, Gardea-Torresdey J, Grey CP, Hutchison J, Li CJ, Liotta C, Ragauskas A, Minteer S, Mueller K, Roberts J, Sadik O, Schmehl R, Schneider W, Selloni A, Stair P, Stewart J, Thorn D, Tyson J, Voelker B, White JM, Wood-Black F. Chemistry for a sustainable future. Environ Sci Technol, 2007, 41: 4840–4846

    Article  CAS  Google Scholar 

  2. Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R. Ionic liquid-mediated formation of 5-hydroxymethylfurfural-A promising biomass-derived building block. Chem Rev, 2011, 111: 397–417

    Article  CAS  Google Scholar 

  3. Luo J, Li J, Shen D, He L, Tong D, Hu C. Catalytic pyrolysis of Pubescens to phenols over Ni/C catalyst. Sci China Chem, 2010, 53: 1487–1491

    Article  CAS  Google Scholar 

  4. Wu J, Zhang J, Zhang H, He JS, Ren Q, Guo M. Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules, 2004, 5: 266–268

    Article  CAS  Google Scholar 

  5. Zhang SJ, Lv XM. Ionic liquids: From Basic Research To Industrial Applications. Science Press, 2006

  6. Li XH, Zhao DB, Fei ZF, Wang LF. Applications of functionalized ionic liquids. Sci China Ser B-Chem, 2006, 49: 385–401

    Article  CAS  Google Scholar 

  7. Chen XW, Li XH, Hu AX, Wang FR. Advances in chiral ionic liquids derived from natural amino acids. Tetrahedron: Asymmetry, 2008, 19: 1–14

    Article  Google Scholar 

  8. Pei Y, Li Z, Liu L, Wang J, Wang H. Selective separation of protein and saccharides by ionic liquids aqueous two-phase systems. Sci China Chem, 2010, 53: 1554–1560

    Article  CAS  Google Scholar 

  9. Zhang S, Zhang X, Zhao Y, Zhao G, Yao X, Yao H. A novel ionic liquids-based scrubbing process for efficient CO2 capture. Sci China Chem, 2010, 53: 1549–1553

    Article  CAS  Google Scholar 

  10. Li J, Guo X, Wang L, Ma X, Zhang Q, Shi F, Deng Y. Co(acac)3/bmimCl as a base-free catalyst system for clean syntheses of N,N′-disubstituted ureas from amines and CO2. Sci China Chem, 2010, 53: 1534–1540

    Article  CAS  Google Scholar 

  11. Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellose with ionic liquids. J Am Chem Soc, 2002, 124: 4974–4975

    Article  CAS  Google Scholar 

  12. Moulthrop JS, Swatloski RP, Moyna G, Rogers RD. High-resolution C-13 NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun, 2005: 1557–1559

  13. Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem, 2007, 9: 63–69

    Article  CAS  Google Scholar 

  14. Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS. Dissolution of wood in ionic liquids. J Agric Food Chem, 2007, 55: 9142–9148

    Article  Google Scholar 

  15. Schlufter K, Schmauder HP, Dorn S, Heinze T. Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun, 2006, 27: 1670–1676

    Article  CAS  Google Scholar 

  16. Pu YQ, Jiang N, Ragauskas AJ. Ionic liquid as a green solvent for lignin. J Wood Chem Technol, 2007, 27: 23–33

    Article  CAS  Google Scholar 

  17. Duan YP, Shi TJ, Guo LY, Li Z. Comparative studies on synthesis of three kinds of ionic liquids and their dissolution of cotton cellulose. Acta Chim Sin, 2009, 67: 1116–1122

    CAS  Google Scholar 

  18. Fukaya Y, Sugimoto A, Ohno H. Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules, 2006, 7: 3295–3297

    Article  CAS  Google Scholar 

  19. Fukaya Y, Hayashi K, Wada M, Ohno H. Cellulose dissolution with polar ionic liquids under mild conditions: Required factors for anions. Green Chem, 2008, 10: 44–46

    Article  CAS  Google Scholar 

  20. Zhang H, Wu J, Zhang J, He JS. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose. Macromolecules, 2005, 38: 8272–8277

    Article  CAS  Google Scholar 

  21. Wu Y, Sasaki T, Irie S, Sakurai K. A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer, 2008, 49: 2321–2327

    Article  CAS  Google Scholar 

  22. Ren Q, Wu J, Zhang J, He JS, Guo ML. Synthesis of 1-allyl,3-methyle mazolium-based roomtemperature ionic liquid and preluviinary study of its dissolving cellulose. Acta Polymer Sin, 2003, 3: 448–451

    Google Scholar 

  23. Graenacher C, Inventor. Cellulose Solution1934.

  24. Erdmenger T, Haensch C, Hoogenboom R, Schubert US. Homogeneous tritylation of cellulose in 1-butyl-3-methyl imidazolium chloride. Macromol Biosci, 2007, 7: 440–445

    Article  CAS  Google Scholar 

  25. Wang ML, Zang HJ, Cai BX, Cheng BW. Dissolubility of the cellulose in [AmMorCl/[Amim]Cl. Chem J Chin Univ, 2009, 30: 1469–1472

    Google Scholar 

  26. Luo HM, Li YQ, Zhou CR. Study on the dissolubility of the cellulose in the functionalized ionic liquid. Poly Mater Sci Engineer, 2005, 21: 233–235

    CAS  Google Scholar 

  27. Kosan B, Schwikal K, Meister F. Solution states of cellulose in selected direct dissolution agents. Cellulose, 2010, 17: 495–506

    Article  CAS  Google Scholar 

  28. Kosan B, Michels C, Meister F. Dissolution and forming of cellulose with ionic liquids. Cellulose, 2008, 15: 59–66

    Article  CAS  Google Scholar 

  29. Zhao H, Baker GA, Song ZY, Olubajo O, Crittle T, Peters D. Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem, 2008, 10: 696–705

    Article  CAS  Google Scholar 

  30. Barthel S, Heinze T. Acylation and carbanilation of cellulose in ionic liquids. Green Chem, 2006, 8: 301–306

    Article  CAS  Google Scholar 

  31. El Seoud OA, Koschella A, Fidale LC, Don S, Heinze T. Applications of ionic liquids in carbohydrate chemistry: A window of opportunities. Biomacromolecules, 2007, 8: 2629–2647

    Article  Google Scholar 

  32. Heinze T, Schwikal K, Barthel S. Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci, 2005, 5: 520–525

    Article  CAS  Google Scholar 

  33. Mazza M, Catana DA, Vaca-Garcia C, Cecutti C. Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose, 2009, 16: 207–215

    Article  CAS  Google Scholar 

  34. Mitsuru Abe, Yukinobu Fukaya, Ohno H. Fast and facile dissolution of cellulose with tetrabutylphosphonium hydroxide containing 40 wt% water. Chem Commun, 2012, 48: 1808–1810

    Article  CAS  Google Scholar 

  35. Rinaldi R. Instantaneous dissolution of cellulose in organic electrolyte solutions. Chem Commun, 2011, 47: 511–513

    Article  CAS  Google Scholar 

  36. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev, 2010, 110: 3552–3599

    Article  CAS  Google Scholar 

  37. Klein AP, Beach ES, Emerson JW, Zimmerman JB. Accelerated solvent extraction of lignin from Aleurites moluccana (Candlenut) nutshells. J Agric Food Chem, 2010, 58: 10045–10048

    Article  CAS  Google Scholar 

  38. Aaltonen O, Jauhiainen O. The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohyd Polym, 2009, 75: 125–129

    Article  CAS  Google Scholar 

  39. Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem, 2009, 11: 339–345

    Article  CAS  Google Scholar 

  40. Pinkert A, Goeke DF, Marsh KN, Pang S. Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem, 2011, 13: 3124–3136

    Article  CAS  Google Scholar 

  41. Sun N, Rahman M, Qin Y, Maxim M L, Rodriguez H, Rogers RD. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem, 2009, 11: 646–655

    Article  CAS  Google Scholar 

  42. Li W, Sun N, Stoner B, Jiang X, Lu X, Rogers RD. Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem, 2011, 13: 2038–2047

    Article  CAS  Google Scholar 

  43. Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS. Dissolution of wood in ionic liquids. J Agric Food Chem, 2007, 55: 9142–9148

    Article  Google Scholar 

  44. King AWT, Zoia L, Filpponen I, et al. In Situ Determination of lignin phenolics and wood solubility in imidazolium chlorides using (31)P NMR. J Agric Food Chem, 2009, 57: 8236–8243

    Article  CAS  Google Scholar 

  45. Muhammad N, Man Z, Bustam MA, Mutalib MIA, Wilfred CD, Rafiq S. Dissolution and delignification of bamboo biomass using amino acid-based ionic liquid. Appl Biochem Biotechnol, 2011, 165: 998–1009

    Article  CAS  Google Scholar 

  46. Abe M, Fukaya Y, Ohno H. Extraction of polysaccharides from bran with phosphonate or phosphinate-derived ionic liquids under short mixing time and low temperature. Green Chem, 2010, 12, 1274–1280

    Article  CAS  Google Scholar 

  47. Zavrel M, Bross D, Funke M, Buchs J, Spiess AC. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol, 2009, 100: 2580–2587

    Article  CAS  Google Scholar 

  48. Remsing RC, Swatloski RP, Rogers RD, Moyna G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: A C-13 and Cl-35/37 NMR relaxation study on model systems. Chem Commun, 2006, 12: 1271–1273

    Article  Google Scholar 

  49. Youngs TGA, Holbrey JD, Deetlefs M, Nieuwenhuyzen M, Gomes MFC, Hardacre C. A molecular dynamics study of glucose solvation in the ionic liquid 1,3-dimethylimidazolium chloride. Chemphyschem, 2006, 7: 2279–2281

    Article  CAS  Google Scholar 

  50. Lindman B, Karlström G, Stigsson L. On the mechanism of dissolution of cellulose. J Mol Liq, 2010, 156: 76–81

    Article  CAS  Google Scholar 

  51. van Spronsen J, Cardoso MAT, Witkamp G-J, de Jong W, Kroon MC. Separation and recovery of the constituents from lignocellulosic biomass by using ionic liquids and acetic acid as co-solvents for mild hydrolysis. Chem Eng Process, 2011, 50: 196–199

    Article  Google Scholar 

  52. Li C, Zhao ZK. Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Adv Synth Catal, 2007, 349: 1847–1850

    Article  CAS  Google Scholar 

  53. Li CZ, Wang Q, Zhao ZK. Acid in ionic liquid: An efficient system for hydrolysis of lignocellulose. Green Chem, 2008, 10: 177–182

    Article  CAS  Google Scholar 

  54. Zhang ZH, Li CZ, Wang Q, Zhao ZBK. Efficient hydrolysis of chitosan in ionic liquids. Carbohydr Polym, 2009, 78: 685–689

    Article  CAS  Google Scholar 

  55. Rinaldi R, Palkovits R, Schuth F. Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed, 2008, 47: 8047–8050

    Article  CAS  Google Scholar 

  56. Rinaldi R, Schuth F. Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemsusChem, 2009, 2: 1096–1107

    Article  CAS  Google Scholar 

  57. Rinaldi R, Meine N, vom Stein J, Palkovits R, Schuth F. Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? ChemsusChem, 2010, 3: 266–276

    Article  CAS  Google Scholar 

  58. Jiang F, Ma D, Bao XH. Acid ionic liquid catalyzed hydrolysis of cellulose. Chinese J Catal, 2009, 30: 279–283

    Article  CAS  Google Scholar 

  59. Jiang F, Zhu QJ, Ma D, Liu XM, Han XW. Direct conversion and NMR observation of cellulose to glucose and 5-hydroxymethylfurfural (HMF) catalyzed by the acidic ionic liquids. J Mol Catal A Chem, 2011, 334: 8–12

    Article  CAS  Google Scholar 

  60. Lee SH, Doherty TV, Linhardt RJ, Dordick JS. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioengineer, 2009, 102: 1368–1376

    Article  CAS  Google Scholar 

  61. Ogeda TL, Petri DFS. Biomass enzymatic hydrolysis. Quimica Nova, 2010, 33: 1549–1558

    Article  CAS  Google Scholar 

  62. Doherty TV, Mora-Pale M, Foley SE, Linhardt RJ, Dordick JS. Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem, 2010, 12: 1967–1975

    Article  CAS  Google Scholar 

  63. Li Q, He YC, Xian M, et al. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol, 2009, 100: 3570–3575

    Article  CAS  Google Scholar 

  64. Bharadwaj R, Wong A, Knierim B, et al. High-throughput enzymatic hydrolysis of lignocellulosic biomass via in-situ regeneration. Bioresour Technol, 2011, 102: 1329–1337

    Article  CAS  Google Scholar 

  65. Zhao H, Holladay JE, Brown H, Zhang ZC. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science, 2007, 316: 1597–1600

    Article  CAS  Google Scholar 

  66. Pidko EA, Degirmenci V, van Santen RA, Hensen EJM. Glucose activation by transient Cr2+ dimers. Angew Chem Int Ed, 2010, 49: 2530–2534

    Article  CAS  Google Scholar 

  67. Yong G, Zhang Y, Ying JY. Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose. Angew Chem Int Ed, 2008, 47: 9345–9348

    Article  CAS  Google Scholar 

  68. Binder JB, Raines RT. Simple Chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc, 2009, 131: 1979–1985

    Article  CAS  Google Scholar 

  69. Zhang Z, Zhao ZK. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour Technol, 2010, 101: 1111–1114

    Article  CAS  Google Scholar 

  70. Kim B, Jeong J, Lee D, et al. Direct transformation of cellulose into 5-hydroxymethyl-2-furfural using a combination of metal chlorides in imidazolium ionic liquid. Green Chem, 2011, 13: 1503–1506

    Article  CAS  Google Scholar 

  71. Long JX, Guo B, Teng JJ, Yu YH, Wang LF, Li XH. SO3H-functionalized ionic liquid: Efficient catalyst for bagasse liquefaction. Bioresour Technol, 2011, 102: 10114–10123

    Article  CAS  Google Scholar 

  72. Long JX, Guo B, Li XH, et al. One step catalytic conversion of cellulose to sustainable chemicals utilizing cooperative ionic liquid pairs. Green Chem, 2011, 13: 2334–2338

    Article  CAS  Google Scholar 

  73. Long JX, Guo B, Li XH, Wang FR, Wang LF. Catalytic decomposition of cellulose in cooperative ionic liquids. Acta Phys Chim Sin, 2011, 27: 995–999

    CAS  Google Scholar 

  74. Long JX, Li XH, Guo B, Wang FR, Yu YH, Wang LF. Simultaneous delignification and selective catalytic transformation of agricultural lignocellulose in cooperative ionic liquid pairs, Green Chem, 2012, DOI: 10.1039/C2GC35105F

  75. Villandier N, Corma A. One pot catalytic conversion of cellulose into biodegradable surfactants. Chem Commun, 2010, 46: 4408–4410

    Article  CAS  Google Scholar 

  76. Kohler S, Heinze T. Efficient synthesis of cellulose furoates in 1-N-butyl-3-methylimidazolium chloride. Cellulose, 2007, 14: 489–495

    Article  Google Scholar 

  77. Kohler S, Liebert T, Heinze T, et al. Interactions of ionic liquids with polysaccharides 9. Hydroxyalkylation of cellulose without additional inorganic bases. Cellulose, 2010, 17: 437–448

    Article  CAS  Google Scholar 

  78. Brennan TCR, Datta S, Blanch HW, Simmons BA, Holmes BM. Recovery of sugars from ionic liquid biomass liquor by solvent extraction. Bioenerg Res, 2010, 3: 123–133

    Article  Google Scholar 

  79. Shill K, Padmanabhan S, Xin Q, Prausnitz JM, Clark DS, Blanch HW. Ionic liquid pretreatment of cellulosic biomass: Enzymatic hydrolysis and ionic liquid recycle. Biotechnol Bioeng, 2011, 108: 511–520

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XueHui Li or Ning Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, J., Li, X., Wang, L. et al. Ionic liquids: Efficient solvent and medium for the transformation of renewable lignocellulose. Sci. China Chem. 55, 1500–1508 (2012). https://doi.org/10.1007/s11426-012-4633-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4633-7

Keywords

Navigation