Skip to main content
Log in

Computational studies of the structure and cation-anion interactions in 1-ethyl-3-methylimidazolium lactate ionic liquid

  • Articles
  • Special Issue · Ionic Liquid and Green Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Quantum chemical calculations of the structures and cation-anion interaction of 1-ethyl-3-methylimidazolium lactate ([Emim][ LAC]) ion pair at the B3LYP/6-31++G** theoretical level were performed. The relevant geometrical characteristics, energy properties, intermolecular H-bonds (H-bonds), and calculated IR vibrations with respect to isolated ions were systematically discussed. The natural bond orbital (NBO) and atoms in molecule (AIM) analyses were also employed to understand the nature of the interactions between cation and anion. The five most stable geometries were verified by analyzing the relative energies and interaction energies. It was found that the most of the C-H…O intermolecular H-bonds interactions in five stable conformers have some covalent character in nature. The elongation and red shift in IR spectrum of C-H bonds which involve in H-bonds is proved by electron transfers from the lone pairs of the carbonyl O atom of [LAC] to the C-H antibonding orbital of the [Emim]+. The interaction modes are more favorable when the carbonyl O atoms of [LAC] interact with the C2-H of the imidazolium ring and the C-H of the ethyl group through the formation of triple H-bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilkes JS. A short history of ionic liquids-from molten salts to neoteric solvents. Green Chem, 2002, 4(2): 73–80

    Article  CAS  Google Scholar 

  2. Plechkova NV, Seddon KR. Applications of ionic liquids in the chemical industry. Chem Soc Rev, 2008, 37(1): 123–150

    Article  CAS  Google Scholar 

  3. Holbrey JD, Reichert WM, Swatloski RP, Broker GA, Pitner WR, Seddon KR, Rogers RD. Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chem, 2002, 4(5): 407–413

    Article  CAS  Google Scholar 

  4. Wappel D, Gronald G, Kalb R, Draxler J. Ionic liquids for post-combustion CO2 absorption. Int J Greenh Gas Con, 2010, 4(3): 486–494

    Article  CAS  Google Scholar 

  5. Petkovic M, Seddon KR, Rebelo LPN, Silva Pereira C. Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev, 2011, 40: 1383–1403

    Article  CAS  Google Scholar 

  6. Welton T. Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem Rev, 1999, 99: 2071–2083

    Article  CAS  Google Scholar 

  7. Zhang S, Zhang X, Zhao Y, Zhao G, Yao X, Yao H. A novel ionic liquids-based scrubbing process for efficient CO2 capture. Sci China Chem, 2010, 53(7): 1549–1553

    Article  CAS  Google Scholar 

  8. Estager J, Oliferenko AA, Seddon KR, Swadzba-Kwasny M. Chlorometallate(III) ionic liquids as Lewis acidic catalysts — a quantitative study of acceptor properties. Dalton Transactions, 2010, 39(47): 11375–11382

    Article  CAS  Google Scholar 

  9. Earle MJ, Plechkova NV, Seddon KR. Green synthesis of biodiesel using ionic liquids. Pure App Chem, 2009, 81(11): 2045–2057

    Article  CAS  Google Scholar 

  10. Anderson K, Rodriguez H, Seddon KR. Phase behaviour of trihexyl(tetradecyl)phosphonium chloride, nonane and water. Green Chem, 2009, 11(6): 780–784

    Article  CAS  Google Scholar 

  11. Oliferenko AA, Oliferenko PV, Seddon KR, Torrecilla JS. Prediction of gas solubilities in ionic liquids. Phys Chem Chem Phys, 2011, 13(38): 17262–17272

    Article  CAS  Google Scholar 

  12. Hardacre C, Murphy RW, Seddon KR, Srinivasan G, Swadzba-Kwasny M. Speciation of chlorometallate ionic liquids based on Gallium(III) and Indium(III). Aust J Chem, 2010, 63(5): 845–848

    Article  CAS  Google Scholar 

  13. Estager J, Nockemann P, Seddon KR, Swadzba-Kwasny M, Tyrrell S. Validation of speciation techniques: A study of Chlorozincate(II) ionic liquids. Inorg Chem, 2011, 50(11): 5258–5271

    Article  CAS  Google Scholar 

  14. Soriano AN, Doma Jr BT, Li M-H. Carbon dioxide solubility in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. J Chem Thermodyn, 2009, 41(4): 525–529

    Article  CAS  Google Scholar 

  15. Bates ED, Mayton RD, Ntai I, Davis JH. CO2 Capture by a task-specific ionic liquid. J Am Chem Soc, 2002, 124(6): 926–927

    Article  CAS  Google Scholar 

  16. Zhang Y, Zhang S, Lu X, Zhou Q, Fan W, Zhang X. Dual amino-functionalised phosphonium ionic liquids for CO2 capture. Chem — Eur J, 2009, 15(12): 3003–3011

    Article  CAS  Google Scholar 

  17. Blanchard LA, Gu Z, Brennecke JF. High-pressure phase behavior of ionic liquid/CO2 systems. J Phys Chem B, 2001, 105(12): 2437–2444

    Article  CAS  Google Scholar 

  18. Dong K, Zhang S, Wang D, Yao X. Hydrogen bonds in imidazolium ionic liquids. J Phys Chem A, 2006, 110:9775–9782

    Article  CAS  Google Scholar 

  19. Bodo E, Postorino P, Mangialardo S, Piacente G, Ramondo F, Bosi F, Ballirano P, Caminiti R. Structure of the molten salt methyl ammonium nitrate explored by experiments and theory. J Phys Chem B, 2011, 115(45): 13149–13161

    Article  CAS  Google Scholar 

  20. Zhang L, Li H, Wang Y, Hu X. Characterizing the structural properties of N,N-dimethylformamide-based ionic liquid. J Phys Chem B, 2007, 111: 11016–11020

    Article  CAS  Google Scholar 

  21. Dhumal NR, Kim HJ, Kiefer J. Molecular interactions in 1-ethyl-3-methylimidazolium acetate ion pair: A density functional study. J Phys Chem A, 2009, 113(38): 10397–10404

    Article  CAS  Google Scholar 

  22. Dhumal NR, Kim HJ, Kiefer J. Electronic structure and normal vibrations of the 1-ethyl-3-methylimidazolium ethyl sulfate ion pair. J Phys Chem A, 2011, 115(15):3551–3558

    Article  CAS  Google Scholar 

  23. Mou Z, Li P, Bu Y, Wang W, Shi J, Song R. Investigations of coupling characters in ionic liquids formed between the1-ethyl-3-methylimidazolium cation and the glycine anion. J Phys Chem B, 2008, 112: 5088–5097

    Article  CAS  Google Scholar 

  24. Turner EA, Pye CC, Singer RD. Use of ab initio calculations toward the rational design of room temperature ionic liquids. J Phys Chem A, 2003, 107: 2277–2288

    Article  CAS  Google Scholar 

  25. Fumino K, Wulf A, Ludwig R. Strong, localized, and directional hydrogen bonds fluidize ionic liquids. Angew Chem Int Ed, 2008, 47: 8731–8734

    Article  CAS  Google Scholar 

  26. Stahl PH, Wermuth CG, eds. Pharmaceutical Salts: Properties, Selection, And Use. Weinheim: Wiley-VCH, 2002

    Google Scholar 

  27. Pernak J, Goc I. New ionic liquids with organic anions. Polish J Chem, 2003, 77(8): 975–984

    CAS  Google Scholar 

  28. Pernak J, Goc I, Mirska I. Anti-microbial activities of protic ionic liquids with lactate anion. Green Chem, 2004, 6(7): 323–329

    Article  CAS  Google Scholar 

  29. Petkovic M, Ferguson J, Bohn A, Trindade J, Martins I, Carvalho MB, Leitão MC, Rodrigues C, Garcia H, Ferreira R, Seddon KR, Rebelo LPN, Silva Pereira C. Exploring fungal activity in the presence of ionic liquids. Green Chem, 2009, 11(6): 889–894

    Article  CAS  Google Scholar 

  30. Ren S, Hou Y, Wu W, Liu Q, Xiao Y, Chen X. Properties of ionic liquids absorbing SO2 and the mechanism of the absorption. J Phys Chem B, 2010, 114: 2175–2179

    Article  CAS  Google Scholar 

  31. Ren S, Hou Y, Wu W, Jin M. Oxidation of SO2 Absorbed by an Ionic Liquid during Desulfurization of simulated flue gases. Ind Eng Chem Res, 2011, 998(50): 998–1002

    Article  Google Scholar 

  32. Yuan X, Zhang S, Liu J, Lu X. Solubilities of CO2 in hydroxyl ammonium ionic liquids at elevated pressures. Fluid Phase Equilibria, 2007, 257(2): 195–200

    Article  CAS  Google Scholar 

  33. Vanoye L, Fanselow M, Holbrey JD, Atkins MP, Seddon KR. Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride. Green Chem, 2009, 11(3): 390–396

    Article  CAS  Google Scholar 

  34. Wang J, Jiang H, Liu Y, Hu Y. Density and surface tension of pure 1-ethyl-3-methylimidazolium l-lactate ionic liquid and its binary mixtures with water. J Chem Thermodyn, 2011, 43(5): 800–804

    Article  CAS  Google Scholar 

  35. Aparicio S, Alcalde R, Atilhan M. Experimental and computational study on the properties of pure and water mixed 1-ethyl-3-methylimidazolium L-(+)-lactate ionic liquid. J Phys Chem B, 2010, 114(17): 5795–5809

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision B.01. Gaussian, Inc, Wallingford CT, 2010

  37. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  38. Gordon MS, Binkley JS, Pople JA, Pietro WJ, Hehre WJ. Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J Am Chem Soc, 1982, 104: 2797–2803

    Article  CAS  Google Scholar 

  39. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  40. Fujii K, Fujimori T, Takamuku T, Kanzaki R, Umebayashi Y, Ishiguro SI: Conformational equilibrium of bis(trifluorome-thanesulfonyl) imide anion of a room-temperature ionic liquid: Raman spectroscopic study and DFT calculations. J Phys Chem B, 2006, 110(16): 8179–8183

    Article  CAS  Google Scholar 

  41. Blokhin AV, Paulechka YU, Strechan AA, Kabo GJ. Physicochemical properties, structure, and conformations of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide C(4)mim NTf2 ionic liquid. J Phys Chem B, 2008, 112(14): 4357–4364

    Article  CAS  Google Scholar 

  42. Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev, 1988, 88(6): 899–926

    Article  CAS  Google Scholar 

  43. Bader RFW. Atoms In Molecules: A Quantum Theory. Clarendon Press, 1994

  44. Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem, 2012, 33(5): 580–592

    Article  CAS  Google Scholar 

  45. Bondi A. Van der Waals volumes and radii. J Phys Chem, 1964, 68: 441–451

    Article  CAS  Google Scholar 

  46. Elaiwi A, Hitchcock PB, Seddon KR, Srinivasan N, Tan YM, Welton T, Zora JA. Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(III) ionic liquids. J Chem Soc Dalton Trans, 1995, 21: 3467–3472

    Article  Google Scholar 

  47. Sponer J, Hobza P. Bifurcated hydrogen bonds in DNA crystal structures. An ab initio quantum chemical study. J Am Chem Soc, 1994, (116): 709–714

    Article  CAS  Google Scholar 

  48. Hobza P, Havlas Zk. Blue-shifting hydrogen bonds. Chem Rev, 2000, 100: 4253–4264

    Article  CAS  Google Scholar 

  49. Veken BJvd, Herrebout WA, Szostak R, Shchepkin DN, Havlas Z, Hobza P. The Nature of improper, blue-shifting hydrogen bonding verified experimentally. J Am Chem Soc, 2001 (123): 12290–12293

    Article  Google Scholar 

  50. Pacios LF. Topological descriptors of the electron density and the electron localization function in hydrogen bond dimers at short intermonomer distances. J Phys Chem A, 2004, 108: 1177–1188

    Article  CAS  Google Scholar 

  51. Arnold WD, Oldfield E. The chemical nature of hydrogen bonding in proteins via NMR: J-couplings, chemical shifts, and AIM theory. 2000, 122: 12835–128

    CAS  Google Scholar 

  52. Rozas I, Alkorta I, Elguero J. Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc, 2000, 122: 11154–11161

    Article  CAS  Google Scholar 

  53. Jenkins S, Morrison I. The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities. Chem Phys Lett, 2000, 317: 97–102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SuoJiang Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, H., Zheng, Y., Chen, H. et al. Computational studies of the structure and cation-anion interactions in 1-ethyl-3-methylimidazolium lactate ionic liquid. Sci. China Chem. 55, 1548–1556 (2012). https://doi.org/10.1007/s11426-012-4649-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4649-z

Keywords

Navigation