Skip to main content
Log in

The electrochemical stability of ionic liquids and deep eutectic solvents

  • Articles
  • SPECIAL TOPIC · Ionic Liquids: Energy, Materials & Environment
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green solvents due to their low volatility. They have been used widely for electrochemically driven reactions because they exhibit high conductivity and excellent electrochemical stability. However, no systematic investigations on the electrochemical potential windows (EPWs), which could be used to characterize the electrochemical stability, have been reported. In this regard, the EPWs of 33 ILs and 23 DESs have been studied utilizing cyclic voltammetry (CV) method and the effects of structural factors (cations and anions of ILs, and HBDs and HBAs of DESs) and external factors (electrode, water content) on the EPWs have been comprehensively investigated. The electrochemical stability of selected ILs comprising five traditional cations, namely imidazolium, pyridinium, pyrrolidinium, piperidinium and ammonium and 13 kinds of versatile anions was studied. The results show that for ILs, both cation and anion play an important role on the reductive and oxidative potential limit. For a same IL at different working electrode, for example, glassy carbon (GC), gold (Au) and platinum (Pt) electrode, the largest potential window is almost observed on the GC working electrode. The investigations on the EPWs of choline chloride (ChCl), choline bromide (ChBr), choline iodide (ChI), and methyl urea based DESs show that the DES composed of ChCl and methyl urea has the largest potential window. This work may aid the selection of ILs or DESs for use as a direct electrolyte or a solvent in electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anastas PT, Warner JC. Green Chemistry: Theory and Practice. New York: Oxford University Press, 1998. 30

    Google Scholar 

  2. Eckert CA. Nature, 1996, 383: 313–318

    Article  CAS  Google Scholar 

  3. Zhang S, Sun J, Zhang X, Xin J, Miao Q, Wang J. Chem Soc Rev, 2014, 43: 7838–7869

    Article  CAS  Google Scholar 

  4. Xue Z, Zhang J, Peng L, Li J, Mu T, Han B, Yang G. Angew Chem Int Ed, 2012, 51: 12325–12329

    Article  CAS  Google Scholar 

  5. Zhang Q, Vigier KDO, Royer S, Jérôme F. Chem Soc Rev, 2012, 41: 7108–7146

    Article  CAS  Google Scholar 

  6. Smith EL, Abbott AP, Ryder KS. Chem Rev, 2014, 114: 11060–11082

    Article  CAS  Google Scholar 

  7. Zhang S, Sun N, He X, Lu X, Zhang X. J Phys Chem Ref Data, 2006, 35: 1475–1517

    Article  CAS  Google Scholar 

  8. Yan C, Mu T. Phys Chem Chem Phys, 2014, 16: 5071–5075

    Article  CAS  Google Scholar 

  9. Jiao T, Zhuang X, He H, Zhao L, Li C, Chen H, Zhang S. Green Chem, 2015, 17: 3783–3790

    Article  CAS  Google Scholar 

  10. Li Z, Jia Z, Luan Y, Mu T. Curr Opin Solid State Mater Sci, 2008, 12: 1–8

    Article  Google Scholar 

  11. Xue Z, Zhang Z, Han J, Chen Y, Mu T. Int J Greenhouse Gas Control, 2011, 5: 628–633

    Article  CAS  Google Scholar 

  12. Zhang X, Zhang X, Dong H, Zhao Z, Zhang S, Huang Y. Energy Environ Sci, 2012, 5: 6668–6681

    Article  CAS  Google Scholar 

  13. Hu S, Zhang Z, Song J, Zhou Y, Han B. Green Chem, 2009, 11: 1746–1749

    Article  CAS  Google Scholar 

  14. Song J, Fan H, Ma J, Han B. Green Chem, 2013, 15: 2619–2635

    Article  CAS  Google Scholar 

  15. van Osch DJGP, Zubeir LF, van den Bruinhorst A, Rocha MA, Kroon MC. Green Chem, 2015, 17: 4518–4521

    Article  Google Scholar 

  16. Cao Y, Mu T. Ind Eng Chem Res, 2014, 53: 8651–8664

    Article  CAS  Google Scholar 

  17. Chen Y, Cao Y, Shi Y, Xue Z, Mu T. Ind Eng Chem Res, 2012, 51: 7418–7427

    Article  CAS  Google Scholar 

  18. Xue Z, Zhang Y, Zhou X, Cao Y, Mu T. Thermochim Acta, 2014, 578: 59–67

    Article  CAS  Google Scholar 

  19. Yan Y, Yin Y, Xin S, Su J, Guo Y, Wan L. Electrochim Acta, 2013, 91: 58–61

    Article  CAS  Google Scholar 

  20. Yan Y, Yin Y, Guo Y, Wan L. Sci China Chem, 2014, 57: 1564–1569

    Article  CAS  Google Scholar 

  21. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Nat Mater, 2009, 8: 621–629

    Article  CAS  Google Scholar 

  22. Barrosse-Antle LE, Bond AM, Compton RG, O’ Mahony AM, Rogers EI, Silvester DS. Chem-Asian J, 2010, 5: 202–230

    Article  CAS  Google Scholar 

  23. Fang Y, Jiang X, Sun X, Dai S. Chem Commun, 2015, 51: 13286–13289

    Article  CAS  Google Scholar 

  24. Waldvogel SR, Janza B. Angew Chem Int Ed, 2014, 53: 7122–7123

    Article  CAS  Google Scholar 

  25. Luska KL, Migowski P, Leitner W. Green Chem, 2015, 17: 3195–3206

    Article  CAS  Google Scholar 

  26. Abbott AP, El Ttaib K, Frisch G, McKenzie KJ, Ryder KS. Phys Chem Chem Phys, 2009, 11: 4269–4277

    Article  CAS  Google Scholar 

  27. Wei L, Zhou Z, Chen S, Xu C, Su D, Schuster ME, Sun S. Chem Commun, 2013, 49: 11152–11154

    Article  CAS  Google Scholar 

  28. Pawar PM, Jarag KJ, Shankarling GS. Green Chem, 2011, 13: 2130–2134

    Article  CAS  Google Scholar 

  29. Phadtare SB, Shankarling GS. Green Chem, 2010, 12: 458–462

    Article  CAS  Google Scholar 

  30. Sun S, Niu Y, Xu Q, Sun Z, Wei X. Ind Eng Chem Res, 2015, 54: 8019–8024

    Article  CAS  Google Scholar 

  31. Juneidi I, Hayyan M, Hashim MA. RSC Adv, 2015, 5: 83636–83647

    Article  CAS  Google Scholar 

  32. Scholz F. Electroanalytical Methods: Guide to Experiments and Applications. Heidelberg: Springer Science & Business Media, 2009

  33. Villagrán C, Banks CE, Hardacre C, Compton RG. Anal Chem, 2004, 76: 1998–2003

    Article  Google Scholar 

  34. O’Mahony AM, Silvester DS, Aldous L, Hardacre C, Compton RG. J Chem Eng Data, 2008, 53: 2884–2891

    Article  Google Scholar 

  35. Navarro-Suárez AM, Hidalgo-Acosta JC, Fadini L, Feliu J, Suárez-Herrera MF. J Phys Chem C, 2011, 115: 11147–11155

    Article  Google Scholar 

  36. Galinski M, Lewandowski A, Stepniak I. Electrochim Acta, 2006, 51: 5567–5580

    Article  CAS  Google Scholar 

  37. De Vos N, Maton C, Stevens CV. ChemElectroChem, 2014, 1: 1258–1270

    Article  Google Scholar 

  38. Yoshimoto S, Taguchi R, Tsuji R, Ueda H, Nishiyama K. Electrochem Commun, 2012, 20: 26–28

    Article  CAS  Google Scholar 

  39. Appetecchi GB, Montanino M, Zane D, Carewska M, Alessandrini F, Passerini S. Electrochim Acta, 2009, 54: 1325–1332

    Article  CAS  Google Scholar 

  40. Rogers EI, Šljukic B, Hardacre C, Compton RG. J Chem Eng Data, 2009, 54: 2049–2053

    Article  CAS  Google Scholar 

  41. Zhou ZB, Matsumoto H, Tatsumi K. Chem-Eur J, 2004, 10: 6581–6591

    Article  CAS  Google Scholar 

  42. Freire MG, Neves CMSS, Carvalho PJ, Gardas RL, Fernandes AM, Marrucho IM, Coutinho JA. J Phys Chem B, 2007, 111: 13082–13089

    Article  CAS  Google Scholar 

  43. Noack K, Schulz PS, Paape N, Kiefer J, Wasserscheid P, Leipertz A. Phys Chem Chem Phys, 2010, 12: 14153–14161

    Article  CAS  Google Scholar 

  44. Xiao L, Johnson KE. J Electrochem Soc, 2003, 150: 307–311

    Article  Google Scholar 

  45. Kroon MC, Buijs W, Peters CJ, Witkamp GJ. Green Chem, 2006, 8: 241–245

    Article  CAS  Google Scholar 

  46. Greaves TL, Weerawardena A, Fong C, Krodkiewska I, Drummond CJ. J Phys Chem B, 2006, 110: 22479–22487

    Article  CAS  Google Scholar 

  47. Tian Y, Goff GS, Runde WH, Batista ER. J Phys Chem B, 2012, 116: 11943–11952

    Article  CAS  Google Scholar 

  48. Cao Y, Chen Y, Sun X, Zhang Z, Mu T. Phys Chem Chem Phys, 2012, 14: 12252–12262

    Article  CAS  Google Scholar 

  49. Schroder U, Wadhawan JD, Compton RG, Marken F, Suarez PA, Consorti CS, Dupont J. New J Chem, 2000, 24: 1009–1015

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiancheng Mu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Jiang, J., Li, G. et al. The electrochemical stability of ionic liquids and deep eutectic solvents. Sci. China Chem. 59, 571–577 (2016). https://doi.org/10.1007/s11426-016-5566-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-5566-3

Keywords

Navigation