Skip to main content
Log in

Effects of Water on Electrochemical Behavior of ZnCl2 and FeCl3 in Deep Eutectic Solvent Composed of Choline Chloride and Urea

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Deep eutectic solvents (DESs) are promising as solvents and electrolytes in electrochemistry due to low volatility, wide electrochemical window, moderate ionic conductivity and solubility to some species. Water content has profound effects on physico-chemical properties of DESs and could be used to tune electrochemical performance of redox active species in DESs. Effects of water content on reline (mixture composed of choline chloride and urea in molar ratio of 1 : 2) were investigated, including ionic conductivity, electrochemical stability of reline and electrochemical processes of ZnCl2 and FeCl3 in reline. The experimental results showed, the ionic conductivity of reline is sensitive to water, when water content is below 41.0 wt %, and ionic conductivity keeps stable above 51.0 wt % water content. When water content changes from 41.0 to 51.0 wt %, transition point from “water-in-reline” to “reline components-in-water aqueous solvent” was observed from both electrochemical stability tests and electrochemical behavior of ZnCl2. Electrochemical processes of ZnCl2 and FeCl3 in reline are promoted with water content increase until up to 41.0 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., and Tambyrajah, V., Novel solvent properties of choline chloride/urea mixtures, Chem. Commun., 2003, vol. 9, p. 70.

    Article  Google Scholar 

  2. Zhang, Q.H., Vigier, K.D., Royer, S., and Jerome, F., Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev., 2012, vol. 41, p. 7108.

    Article  CAS  Google Scholar 

  3. Zhang, C., Zhang, L., and Yu, G., Eutectic electrolytes as a promising platform for next-generation electrochemical energy storage, Acc. Chem. Res., 2020, vol. 53, p. 1648.

    Article  CAS  Google Scholar 

  4. Shah, D. and Mjalli, F.S., Effect of water on the thermo-physical properties of reline: an experimental and molecular simulation based approach, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 23900.

    Article  CAS  Google Scholar 

  5. Chen, Y., Yu, D., Chen, W., Fu, L., and Mu, T., Water absorption by deep eutectic solvents, Phys. Chem. Chem. Phys., 2019, vol. 21, p. 2601.

    Article  CAS  Google Scholar 

  6. Ruggeri, S., Poletti, F., Zanardi, C., Pigani, L., Zanfrognini, B., Corsi, E., Dossi, N., Salomäki, M., Kivelä, H., Lukkari, J., and Terzi, F., Chemical and electrochemical properties of a hydrophobic deep eutectic solvent, Electrochim. Acta, 2019, vol. 295, p. 124.

    Article  CAS  Google Scholar 

  7. Liao, H.G., Jiang, Y.X., Zhou, Z.Y., Chen, S.P., and Sun, S.G., Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis, Angew. Chem. Int. Ed., 2008, vol. 47, p. 9100.

    Article  CAS  Google Scholar 

  8. Hammond, O.S., Eslava, S., Smith, A.J., Zhang, J., and Edler, K.J., Microwave-assisted deep eutectic-solvothermal preparation of iron oxide nanoparticles for photoelectrochemical solar water splitting, J. Mater. Chem. A, 2017, vol. 5, p. 16189.

    Article  CAS  Google Scholar 

  9. Hammond, O.S., Edler, K.J., Bowron, D.T., and Torrente-Murciano, L., Deep eutectic-solvothermal synthesis of nanostructured ceria, Nat. Commun., 2017, vol. 8, p. 14150.

    Article  CAS  Google Scholar 

  10. Cherigui, E.A.M., Sentosun, K., Mamme, M.H., Lukaczynska, M., Terryn, H., Bals, S., and Ustarroz, J., On the control and effect of water content during the electrodeposition of Ni nanostructures from deep eutectic solvents, J. Phys. Chem. C, 2018, vol. 122, p. 23129.

    Article  CAS  Google Scholar 

  11. Thanu, D.P.R., Raghavan, S., and Keswani, M., Effect of water addition to choline chloride-urea deep eutectic solvent (DES) on the removal of post-etch resid ues formed on copper, IEEE Trans. Semicond. Manuf., 2012, vol. 25, p. 516.

    Article  Google Scholar 

  12. Zhao, J., Zhang, J., Yang, W., Chen, B., Zhao, Z., Qiu, H., Dong, S., Zhou, X., Cui, G., and Chen, L., Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries, Nano Energy, 2019, vol. 57, p. 625.

    Article  CAS  Google Scholar 

  13. Yaghoobnejad Asl, H., Sharma, S., and Manthiram, A., The critical effect of water content in the electrolyte on the reversible electrochemical performance of Zn–VPO4F cells, J. Mater. Chem. A, 2020, vol. 8, p. 8262.

    Article  CAS  Google Scholar 

  14. Li, R., Dong, Q., Xia, J., Luo, C., Sheng, L., Cheng, F., and Liang, J., Electro deposition of composition controllable ZnNi coating from water modified deep eutectic solvent, Surf. Coat. Technol., 2019, vol. 366, p. 138.

    Article  CAS  Google Scholar 

  15. Hammond, O.S., Bowron, D.T., and Edler, K.J., The effect of water upon deep eutectic solvent nanostructure: an unusual transition from ionic mixture to aqueous solution, Angew. Chem. Int. Ed., 2017, vol. 56, p. 9782.

    Article  CAS  Google Scholar 

  16. Kumari, P., Shobhna, Kaur, S., and Kashyap, H.K., Influence of hydration on the structure of reline deep eutectic solvent: a molecular dynamics study, ACS Omega, 2018, vol. 3, p. 15246.

    Article  CAS  Google Scholar 

  17. Zhekenov, T., Toksanbayev, N., Kazakbayeva, Z., Shah, D., and Mjalli, F.S., Formation of type III deep eutectic solvents and effect of water on their intermolecular interactions, Fluid Phase Equilib., 2017, vol. 441, p. 43.

    Article  CAS  Google Scholar 

  18. D’Agostino, C., Gladden, L.F., Mantle, M.D., Abbott, A.P., Ahmed, E.I., Al-Murshedi, A.Y.M., and Harris, R.C., Molecular and ionic diffusion in aqueous—deep eutectic solvent mixtures: probing inter-molecular interactions using PFG NMR, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 15297.

    Article  Google Scholar 

  19. Hammond, O.S., Li, H., Westermann, C., Al-Murshedi, A.Y.M., Endres, F., Abbott, A.P., Warr, G.G., Edler, K.J., and Atkin, R., Nanostructure of the deep eutectic solvent/platinum electrode interface as a function of potential and water content, Nanoscale Horizons, 2019, vol. 4, p. 158.

    Article  CAS  Google Scholar 

  20. Xu, J., Ma, Q., Su, H., Qiao, F., Leung, P., Shah, A., and Xu, Q., Redox characteristics of iron ions in different deep eutectic solvents, Ionics, 2020, vol. 26, p. 483.

    Article  CAS  Google Scholar 

  21. Du, C.L., Yang, H.Y., Chen, X.B., Wang, L.J., Dong, H., Ning, Y.S., Lai, Y.J., Jia, J.P., and Zhao, B.Y., Effect of coordinated water of hexahydrate on nickel platings from choline-urea ionic liquid, J. Mater. Sci., 2018, vol. 53, p. 10758.

    Article  CAS  Google Scholar 

  22. Valverde, P.E., Green, T.A., and Roy, S., Effect of water on the electrodeposition of copper from a deep eutectic solvent, J. Appl. Electrochem., 2020, vol. 50, p. 699.

    Article  CAS  Google Scholar 

  23. Lukaczynska-Anderson, M., Mamme, M.H., Ceglia, A., Van den Bergh, K., De Strycker, J., De Proft, F., Terryn, H., and Ustarroz, J., The role of hydrogen bond donor and water content on the electrochemical reduction of Ni2+ from solvents—an experimental and modelling study, Phys. Chem. Chem. Phys., 2020, vol. 22, p. 16125.

    Article  CAS  Google Scholar 

  24. Whitehead, A.H., Pölzler, M., and Gollas, B., Zinc electrodeposition from a deep eutectic system containing choline chloride and ethylene glycol, J. Electrochem. Soc., 2010, vol. 157, p. D328.

    Article  CAS  Google Scholar 

  25. Abbott, A.P., Barron, J.C., Frisch, G., Gurman, S., Ryder, K.S., and Fernando Silva, A., Double layer effects on metal nucleation in deep eutectic solvents, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 10224.

    Article  CAS  Google Scholar 

  26. Vieira, L., Schennach, R., and Gollas, B., The effect of the electrode material on the electrodeposition of zinc from deep eutectic solvents, Electrochim. Acta, 2016, vol. 197, p. 344.

    Article  CAS  Google Scholar 

  27. Song, Y.X., Tang, J., Hu, J.G., Yang, H., Gu, W.M., Fu, Y.N., and Ji, X.B., Interfacial assistant role of amine additives on zinc electrodeposition from deep eutectic solvents: an in situ X-ray imaging investigation, Electrochim. Acta, 2017, vol. 240, p. 90.

    Article  CAS  Google Scholar 

  28. Alesary, H.F., Cihangir, S., Ballantyne, A.D., Harris, R.C., Weston, D.P., Abbott, A.P., and Ryder, K.S., Influence of additives on the electrodeposition of zinc from a deep eutectic solvent, Electrochim. Acta, 2019, vol. 304, p. 118.

    Article  CAS  Google Scholar 

  29. Xu, Q., Zhao, T.S., Wei, L., Zhang, C., and Zhou, X.L., Electrochemical characteristics and transport properties of Fe(II)/Fe(III) redox couple in a non-aqueous reline deep eutectic solvent, Electrochim. Acta, 2015, vol. 154, p. 462.

    Article  CAS  Google Scholar 

  30. Yue, D., Jia, Y., Yao, Y., Sun, J., and Jing, Y., Structure and electrochemical behavior of ionic liquid analogue based on choline chloride and urea, Electrochim. Acta, 2012, vol. 65, p. 30.

    Article  CAS  Google Scholar 

  31. Hills, G., Kaveh Pour, A., and Scharifker, B., The formation and properties of single nuclei, Electrochim. Acta, 1983, vol. 28, p. 891.

    Article  CAS  Google Scholar 

  32. Bard, A.J. and Faulkner, L.R., Electrochemical methods: fundamentals and applications, 2nd ed., Wiley: New York, 2001.

    Google Scholar 

  33. Nicholson, R.S., Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics, Anal. Chem., 1965, vol. 37, p. 1351.

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge financial support from the National Natural Science Foundation of China (grant no. 21962019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zhu.

Ethics declarations

Authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Deng, R.X. & Jiang, Q.H. Effects of Water on Electrochemical Behavior of ZnCl2 and FeCl3 in Deep Eutectic Solvent Composed of Choline Chloride and Urea. Russ J Electrochem 58, 617–625 (2022). https://doi.org/10.1134/S1023193522070163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522070163

Keywords:

Navigation