Skip to main content

Room-Temperature Molten Salts: Protic Ionic Liquids and Deep Eutectic Solvents as Media for Electrochemical Application

  • Chapter
Electrochemistry in Ionic Liquids

Abstract

Ionic liquids (ILs) are room-temperature molten salts (RTMS) composed mostly of organic ions that may undergo almost unlimited structural variations. ILs and deep eutectic solvents (DESs) have been applied in various fields, such as electrolytes for lithium ion batteries, redox flow batteries (RFBs), electrodeposition, and electropolishing, and even in fuel cells. This chapter covers the newest aspects of H-donor ILs in applications where their transport properties (ion conductivity, diffusion, and viscosity) are exploited, for example, as electrochemical solvents for energy storage where conventional media, organic solvents (in batteries), or water (in supercapacitors) fail. Metal nanoparticles’ (NPs) formulation and stabilization in H-donor RTMS with some unique size, shape, and properties are also discussed. In these decidedly different materials, a mixture with a molecular solvent shows electroactivity that is not exhibited in more traditional systems, creating huge potential for energy storage and electrocatalysis. The remarkable recent increase in the level of interest in RTMS (protic ionic liquids, PILs, and DESs) in academics and industry is illustrated by the rapid growth in the number of publications on the topic (Fig. 1), with more than a 100-fold increase observed over the period 2004 to 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ho TD, Zhang C, Hantao LW, Anderson JL (2013) Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 86(1):262–285. doi:10.1021/ac4035554

    Google Scholar 

  2. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111(5):3508–3576. doi:10.1021/cr1003248

    CAS  Google Scholar 

  3. Shukla SK, Kumar A (2013) Probing the acidity of carboxylic acids in protic ionic liquids, water, and their binary mixtures: activation energy of proton transfer. J Phys Chem B 117(8):2456–2465. doi:10.1021/jp310927w

    CAS  Google Scholar 

  4. Greaves TL, Drummond CJ (2007) Protic ionic liquids: properties and applications. Chem Rev 108(1):206–237. doi:10.1021/cr068040u

    Google Scholar 

  5. Walden, Bull. Acad. Sci. St. Petersbourg 1914, 405–422

    Google Scholar 

  6. Yasuda T, Watanabe M (2013) Protic ionic liquids: fuel cell applications. MRS Bull 38(07):560–566. doi:10.1557/mrs.2013.153

    CAS  Google Scholar 

  7. Lee S-Y, Ogawa A, Kanno M, Nakamoto H, Yasuda T, Watanabe M (2010) Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J Am Chem Soc 132(28):9764–9773. doi:10.1021/ja102367x

    CAS  Google Scholar 

  8. Zhao C, Burrell G, Torriero AAJ, Separovic F, Dunlop NF, MacFarlane DR, Bond AM (2008) Electrochemistry of room temperature protic ionic liquids. J Phys Chem B 112(23):6923–6936. doi:10.1021/jp711804j

    CAS  Google Scholar 

  9. Johnson L, Ejigu A, Licence P, Walsh DA (2012) Hydrogen oxidation and oxygen reduction at platinum in protic ionic liquids. J Phys Chem C 116(34):18048–18056. doi:10.1021/jp303749k

    CAS  Google Scholar 

  10. Lu X, Burrell G, Separovic F, Zhao C (2012) Electrochemistry of room temperature protic ionic liquids: a critical assessment for use as electrolytes in electrochemical applications. J Phys Chem B 116(30):9160–9170. doi:10.1021/jp304735p

    CAS  Google Scholar 

  11. Zhang S, Miran MS, Ikoma A, Dokko K, Watanabe M (2014) Protic ionic liquids and salts as versatile carbon precursors. J Am Chem Soc 136(5):1690–1693. doi:10.1021/ja411981c

    CAS  Google Scholar 

  12. Angell CA, Byrne N, Belieres J-P (2007) Parallel developments in aprotic and protic ionic liquids: physical chemistry and applications. Acc Chem Res 40(11):1228–1236. doi:10.1021/ar7001842

    CAS  Google Scholar 

  13. Yue X, Chen X, Li Q (2012) Comparison of aggregation behaviors of a phytosterol ethoxylate surfactant in protic and aprotic ionic liquids. J Phys Chem B 116(31):9439–9444. doi:10.1021/jp305230r

    CAS  Google Scholar 

  14. Marin TW, Shkrob IA, Dietz ML (2011) Hydrogen-bonding interactions and protic equilibria in room-temperature ionic liquids containing crown ethers. J Phys Chem B 115(14):3912–3918. doi:10.1021/jp201193f

    CAS  Google Scholar 

  15. Gelbard G (2005) Organic synthesis by catalysis with ion-exchange resins. Ind Eng Chem Res 44(23):8468–8498. doi:10.1021/ie0580405

    CAS  Google Scholar 

  16. Ohno H, Yoshizawa M (2002) Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles. Solid State Ionics 154–155:303–309. doi:10.1016/S0167-2738(02)00526-X

    Google Scholar 

  17. Adam C, Bravo MV, Mancini PME (2014) Molecular solvent effect on the acidity constant of protic ionic liquids. Tetrahedron Lett 55(1):148–150. doi:10.1016/j.tetlet.2013.10.137

    CAS  Google Scholar 

  18. Shukla SK, Kumar A (2013) Do protic ionic liquids and water display analogous behavior in terms of Hammett acidity function? Chem Phys Lett 566:12–16. doi:10.1016/j.cplett.2013.02.029

    CAS  Google Scholar 

  19. Jin H, Baker GA, Arzhantsev S, Dong J, Maroncelli M (2007) Solvation and rotational dynamics of coumarin 153 in ionic liquids: comparisons to conventional solvents. J Phys Chem B 111(25):7291–7302. doi:10.1021/jp070923h

    CAS  Google Scholar 

  20. Singh A, Kumar A (2012) Probing the mechanism of Baylis-Hillman reaction in ionic liquids. J Org Chem 77(19):8775–8779. doi:10.1021/jo301348k

    CAS  Google Scholar 

  21. Zhang X-X, Liang M, Ernsting NP, Maroncelli M (2013) Conductivity and solvation dynamics in ionic liquids. J Phys Chem Lett 4(7):1205–1210. doi:10.1021/jz400359r

    CAS  Google Scholar 

  22. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 1:70–71. doi:10.1039/b210714g

    Google Scholar 

  23. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126(29):9142–9147. doi:10.1021/ja048266j

    CAS  Google Scholar 

  24. Hayyan A, Hashim MA, Hayyan M, Mjalli FS, AlNashef IM (2013) A novel ammonium based eutectic solvent for the treatment of free fatty acid and synthesis of biodiesel fuel. Ind Crop Prod 46:392–398. doi:10.1016/j.indcrop.2013.01.033

    CAS  Google Scholar 

  25. Salomé S, Pereira NM, Ferreira ES, Pereira CM, Silva AF (2013) Tin electrodeposition from choline chloride based solvent: Influence of the hydrogen bond donors. J Electroanal Chem 703:80–87. doi:10.1016/j.jelechem.2013.05.007

    Google Scholar 

  26. Chakrabarti MH, Mjalli FS, AlNashef IM, Hashim MA, Hussain MA, Bahadori L, Low CTJ (2014) Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries. Renew Sustain Energy Rev 30:254–270. doi:10.1016/j.rser.2013.10.004

    CAS  Google Scholar 

  27. Hayyan A, Hashim MA, Hayyan M, Mjalli FS, AlNashef IM (2014) A new processing route for cleaner production of biodiesel fuel using a choline chloride based deep eutectic solvent. J Clean Prod 65:246–251. doi:10.1016/j.jclepro.2013.08.031

    CAS  Google Scholar 

  28. Ali E, Hadj-Kali MK, Mulyono S, Alnashef I, Fakeeha A, Mjalli F, Hayyan A (2014) Solubility of CO2 in deep eutectic solvents: experiments and modelling using the Peng–Robinson equation of state. Chem Eng Res Design 92(10):1898–1906. doi:10.1016/j.cherd.2014.02.004

    CAS  Google Scholar 

  29. Mandroyan A, Mourad-Mahmoud M, Doche M-L, Hihn J-Y (2014) Effects of ultrasound and temperature on copper electro reduction in deep eutectic solvents (DES). Ultrason Sonochem 21(6):2010–2019. doi:10.1016/j.ultsonch.2014.02.019

    CAS  Google Scholar 

  30. Wu S-H, Caparanga AR, Leron RB, Li M-H (2012) Vapor pressure of aqueous choline chloride-based deep eutectic solvents (ethaline, glyceline, maline and reline) at 30–70°C. Thermochim Acta 544:1–5. doi:10.1016/j.tca.2012.05.031

    CAS  Google Scholar 

  31. Hayyan M, Hashim MA, Hayyan A, Al-Saadi MA, AlNashef IM, Mirghani MES, Saheed OK (2013) Are deep eutectic solvents benign or toxic? Chemosphere 90(7):2193–2195. doi:10.1016/j.chemosphere.2012.11.004

    CAS  Google Scholar 

  32. Leron RB, Li M-H (2013) Solubility of carbon dioxide in a choline chloride–ethylene glycol based deep eutectic solvent. Thermochim Acta 551:14–19. doi:10.1016/j.tca.2012.09.041

    CAS  Google Scholar 

  33. Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC (2014) Natural deep eutectic solvents—solvents for the 21st century. ACS Sustainable Chem Eng 2(5):1063–1071. doi:10.1021/sc500096j

    CAS  Google Scholar 

  34. Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68. doi:10.1016/j.aca.2012.12.019

    CAS  Google Scholar 

  35. Abbott AP, Azam M, Ryder KS, Saleem S (2013) In situ electrochemical digital holographic microscopy; a study of metal electrodeposition in deep eutectic solvents. Anal Chem 85(14):6653–6660. doi:10.1021/ac400262c

    CAS  Google Scholar 

  36. Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH (2013) Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents. J Nat Prod 76(11):2162–2173. doi:10.1021/np400051w

    CAS  Google Scholar 

  37. Hammons JA, Muselle T, Ustarroz J, Tzedaki M, Raes M, Hubin A, Terryn H (2013) Stability, assembly, and particle/solvent interactions of Pd nanoparticles electrodeposited from a deep eutectic solvent. J Phys Chem C 117(27):14381–14389. doi:10.1021/jp403739y

    CAS  Google Scholar 

  38. Chen R, Wu F, Xu B, Li L, Qiu X, Chen S (2007) Binary complex electrolytes based on LiX [X = N(SO2CF3)2−, CF3SO3−, ClO4−]-acetamide for electric double layer capacitors. J Electrochem Soc 154(7):A703–A708. doi:10.1149/1.2737350

    CAS  Google Scholar 

  39. Hu Y, Li H, Huang X, Chen L (2004) Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries. Electrochem Commun 6(1):28–32. doi:10.1016/j.elecom.2003.10.009

    CAS  Google Scholar 

  40. Boisset A, Jacquemin J, Anouti M (2013) Physical properties of a new deep eutectic solvent based on lithium bis[(trifluoromethyl)sulfonyl]imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors. Electrochim Acta 102:120–126. doi:10.1016/j.electacta.2013.03.150

    CAS  Google Scholar 

  41. Boisset A, Menne S, Jacquemin J, Balducci A, Anouti M (2013) Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Phys Chem Chem Phys 15(46):20054–20063. doi:10.1039/c3cp53406e

    CAS  Google Scholar 

  42. Podolean I, Hardacre C, Goodrich P, Brun N, Backov R, Coman SM, Parvulescu VI (2013) Chiral supported ionic liquid phase (CSILP) catalysts for greener asymmetric hydrogenation processes. Catal Today 200:63–73. doi:10.1016/j.cattod.2012.06.020

    CAS  Google Scholar 

  43. Suzuki Y, Wakatsuki J, Tsubaki M, Sato M (2013) Imidazolium-based chiral ionic liquids: synthesis and application. Tetrahedron 69(46):9690–9700. doi:10.1016/j.tet.2013.09.017

    CAS  Google Scholar 

  44. Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127(8):2398–2399. doi:10.1021/ja043451i

    CAS  Google Scholar 

  45. Ohno H, Fukumoto K (2007) Amino acid ionic liquids. Acc Chem Res 40(11):1122–1129. doi:10.1021/ar700053z

    CAS  Google Scholar 

  46. Zhu J-F, He L, Zhang L, Huang M, Tao G-H (2011) Experimental and theoretical enthalpies of formation of glycine-based sulfate/bisulfate amino acid ionic liquids. J Phys Chem B 116(1):113–119. doi:10.1021/jp209649h

    Google Scholar 

  47. Khatri PK, Thakre GD, Jain SL (2013) Tribological performance evaluation of task-specific ionic liquids derived from amino acids. Ind Eng Chem Res 52(45):15829–15837. doi:10.1021/ie402141v

    CAS  Google Scholar 

  48. Sowmiah S, Srinivasadesikan V, Tseng M-C, Chu Y-H (2009) On the chemical stabilities of ionic liquids. Molecules 14(9):3780–3813

    CAS  Google Scholar 

  49. Rogers RD, Voth GA (2007) Ionic liquids. Acc Chem Res 40(11):1077–1078. doi:10.1021/ar700221n

    CAS  Google Scholar 

  50. Hough WL, Smiglak M, Rodriguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel JE, Carliss RD, Soutullo MD, Davis JJH, Rogers RD (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31(8):1429–1436. doi:10.1039/b706677p

    CAS  Google Scholar 

  51. Yue C, Fang D, Liu L, Yi T-F (2011) Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. J Mol Liq 163(3):99–121. doi:10.1016/j.molliq.2011.09.001

    CAS  Google Scholar 

  52. Peric B, Sierra J, Martí E, Cruañas R, Garau MA (2014) A comparative study of the terrestrial ecotoxicity of selected protic and aprotic ionic liquids. Chemosphere 108:418–425. doi:10.1016/j.chemosphere.2014.02.043

    CAS  Google Scholar 

  53. Romero A, Santos A, Tojo J, Rodríguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater 151(1):268–273. doi:10.1016/j.jhazmat.2007.10.079

    CAS  Google Scholar 

  54. Frade RFM, Simeonov S, Rosatella AA, Siopa F, Afonso CAM (2013) Toxicological evaluation of magnetic ionic liquids in human cell lines. Chemosphere 92(1):100–105. doi:10.1016/j.chemosphere.2013.02.047

    CAS  Google Scholar 

  55. Cvjetko Bubalo M, Radošević K, Radojčić Redovniković I, Halambek J, Gaurina Srček V (2014) A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol Environ Saf 99:1–12. doi:10.1016/j.ecoenv.2013.10.019

    CAS  Google Scholar 

  56. Gouveia W, Jorge TF, Martins S, Meireles M, Carolino M, Cruz C, Almeida TV, Araújo MEM (2014) Toxicity of ionic liquids prepared from biomaterials. Chemosphere 104:51–56. doi:10.1016/j.chemosphere.2013.10.055

    CAS  Google Scholar 

  57. Huang L, Zhai M, Peng J, Xu L, Li J, Wei G (2008) Synthesis of room temperature ionic liquids from carboxymethylated chitosan. Carbohydr Polym 71(4):690–693. doi:10.1016/j.carbpol.2007.06.020

    CAS  Google Scholar 

  58. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014. doi:10.1016/j.progpolymsci.2011.02.001

    CAS  Google Scholar 

  59. Lu X, Zhang Q, Zhang L, Li J (2006) Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochem Commun 8(5):874–878. doi:10.1016/j.elecom.2006.03.026

    CAS  Google Scholar 

  60. Singh MP, Singh RK, Chandra S (2014) Ionic liquids confined in porous matrices: physicochemical properties and applications. Prog Mater Sci 64:73–120. doi:10.1016/j.pmatsci.2014.03.001

    CAS  Google Scholar 

  61. Attri P, Lee S-H, Hwang SW, Kim JIL, Jang W, Kim YB, Park JH, Kwon G-C, Choi EH, Kim IT (2014) Effect of temperature on the interactions between low bandgap polymer and ionic liquids. Thermochim Acta 579:15–21. doi:10.1016/j.tca.2013.12.022

    CAS  Google Scholar 

  62. Wellens S, Vander Hoogerstraete T, Möller C, Thijs B, Luyten J, Binnemans K (2014) Dissolution of metal oxides in an acid-saturated ionic liquid solution and investigation of the back-extraction behaviour to the aqueous phase. Hydrometall 144–145:27–33. doi:10.1016/j.hydromet.2014.01.015

    Google Scholar 

  63. Noda A, Susan MABH, Kudo K, Mitsushima S, Hayamizu K, Watanabe M (2003) Brønsted acid–base ionic liquids as proton-conducting nonaqueous electrolytes. J Phys Chem B 107(17):4024–4033. doi:10.1021/jp022347p

    CAS  Google Scholar 

  64. Belieres J-P, Angell CA (2007) Protic ionic liquids: preparation, characterization, and proton free energy level representation. J Phys Chem B 111(18):4926–4937. doi:10.1021/jp067589u

    CAS  Google Scholar 

  65. Fortunato GG, Mancini PM, Bravo MV, Adam CG (2010) New solvents designed on the basis of the molecular-microscopic properties of binary mixtures of the type (protic molecular solvent + 1-butyl-3-methylimidazolium-based ionic liquid). J Phys Chem B 114(36):11804–11819. doi:10.1021/jp103677q

    CAS  Google Scholar 

  66. Kavitha T, Attri P, Venkatesu P, Devi RSR, Hofman T (2012) Influence of alkyl chain length and temperature on thermophysical properties of ammonium-based ionic liquids with Molecular solvent. J Phys Chem B 116(15):4561–4574. doi:10.1021/jp3015386

    CAS  Google Scholar 

  67. Goodenough JB, Park K-S (2005) The li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176. doi:10.1021/ja3091438

    Google Scholar 

  68. Jin L, Nairn KM, Forsyth CM, Seeber AJ, MacFarlane DR, Howlett PC, Forsyth M, Pringle JM (2005) Structure and transport properties of a plastic crystal ion conductor: diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. J Am Chem Soc 134(23):9688–9697. doi:10.1021/ja301175v

    Google Scholar 

  69. Ohno H, Yoshizawa M (2005) Preparation and properties of polymerized ionic liquids as film electrolytes. In: Rogers R et al (eds) Ionic liquids IIIB: fundamentals, progress, challenges, and opportunities, vol 902, ACS Symposium Series. American Chemical Society, Washington, DC, pp 159–170. doi:10.1021/bk-2005-0902.ch013

    Google Scholar 

  70. Anouti M, Jacquemin J, Lemordant D (2010) Transport properties of protic ionic liquids, pure and in aqueous solutions: effects of the anion and cation structure. Fluid Phase Equilib 297(1):13–22. doi:10.1016/j.fluid.2010.05.019

    CAS  Google Scholar 

  71. Pires J, Timperman L, Jacquemin J, Balducci A, Anouti M (2013) Density, conductivity, viscosity, and excess properties of (pyrrolidinium nitrate-based protic ionic liquidand propylene carbonate) binary mixture. J Chem Thermodyn 59:10–19. doi:10.1016/j.jct.2012.11.020

    CAS  Google Scholar 

  72. Xu Y (2013) Volumetric, viscosity, and electrical conductivity properties of aqueous solutions of two n-butylammonium-based protic ionic liquids at several temperatures. J Chem Thermodyn 64:126–133. doi:10.1016/j.jct.2013.05.019

    CAS  Google Scholar 

  73. Yang Q, Yu K, Xing H, Su B, Bao Z, Yang Y, Ren Q (2013) The effect of molecular solvents on the viscosity, conductivity and ionicity of mixtures containing chloride anion-based ionic liquid. J Ind Eng Chem 19(5):1708–1714. doi:10.1016/j.jiec.2013.02.010

    CAS  Google Scholar 

  74. Couadou E, Jacquemin J, Galiano H, Hardacre C, Anouti M (2013) A comparative study on the thermophysical properties for two bis[(trifluoromethyl)sulfonyl]imide-based ionic liquids containing the trimethyl-sulfonium or the trimethyl-ammonium cation in molecular solvents. J Phys Chem B 117(5):1389–1402. doi:10.1021/jp308139r

    CAS  Google Scholar 

  75. Anouti M, Jacquemin J, Porion P (2012) Transport properties investigation of aqueous protic ionic liquid solutions through conductivity, viscosity, and NMR self-diffusion measurements. J Phys Chem B 116(14):4228–4238. doi:10.1021/jp3010844

    CAS  Google Scholar 

  76. Yushchenko DA, Shvadchak VV, Klymchenko AS, Duportail G, Pivovarenko VG, Mély Y (2007) Modulation of excited-state intramolecular proton transfer by viscosity in protic media. J Phys Chem A 111(42):10435–10438. doi:10.1021/jp074726u

    CAS  Google Scholar 

  77. Chen S, Vijayaraghavan R, MacFarlane DR, Izgorodina EI (2013) Ab initio prediction of proton NMR chemical shifts in imidazolium ionic liquids. J Phys Chem B 117(11):3186–3197. doi:10.1021/jp310267x

    CAS  Google Scholar 

  78. Smith JA, Webber GB, Warr GG, Atkin R (2013) Rheology of protic Ionic liquids and their mixtures. J Phys Chem B 117(44):13930–13935. doi:10.1021/jp407715e

    CAS  Google Scholar 

  79. Han H-B, Nie J, Liu K, Li W-K, Feng W-F, Armand M, Matsumoto H, Zhou Z-B (2010) Ionic liquids and plastic crystals based on tertiary sulfonium and bis(fluorosulfonyl)imide. Electrochim Acta 55(3):1221–1226. doi:10.1016/j.electacta.2009.10.019

    CAS  Google Scholar 

  80. Anouti M, Caillon-Caravanier M, Dridi Y, Galiano H, Lemordant D (2008) Synthesis and characterization of new pyrrolidinium based protic ionic liquids. Good and superionic liquids. J Phys Chem B 112(42):13335–13343. doi:10.1021/jp805992b

    CAS  Google Scholar 

  81. Abbott AP, Capper G, Davies DL, McKenzie KJ, Obi SU (2006) Solubility of metal oxides in deep eutectic solvents based on choline chloride. J Chem Eng Data 51(4):1280–1282. doi:10.1021/je060038c

    CAS  Google Scholar 

  82. Guo W, Hou Y, Ren S, Tian S, Wu W (2013) Formation of deep eutectic solvents by phenols and choline chloride and their physical properties. J Chem Eng Data 58(4):866–872. doi:10.1021/je300997v

    CAS  Google Scholar 

  83. Takano Y, Nakamura H (2006) Quantum mechanical study of the proton transfer via a peptide bond in the novel proton translocation pathway of cytochrome c oxidase. Chem Phys Lett 430(1–3):149–155. doi:10.1016/j.cplett.2006.08.138

    CAS  Google Scholar 

  84. Martinus N, Crawford D, Sinclair D, Vincent CA (1977) The extended Jones—Dole equation. Electrochim Acta 22(10):1183–1187. doi:10.1016/0013-4686(77)80059-5

    CAS  Google Scholar 

  85. Szymczyk K (2014) Comparative study of the physicochemical properties of aqueous solutions of the hydrocarbon and fluorocarbon surfactants and their ternary mixtures. Chem Phys 433:42–47. doi:10.1016/j.chemphys.2014.02.001

    CAS  Google Scholar 

  86. Jones G, Dole M (1930) The electrical conductance of aqueous solutions of barium chloride as a function of the concentration. J Am Chem Soc 52(6):2245–2256. doi:10.1021/ja01369a009

    CAS  Google Scholar 

  87. Dole M (1984) Debye’s contribution to the theory of the viscosity of strong electrolytes. J Phys Chem 88(26):6468–6469. doi:10.1021/j150670a003

    CAS  Google Scholar 

  88. Hammadi A, Champeney DC (1998) Ion-solvent interactions of some alkali halides in glycerol from density and viscosity data. J Chem Eng Data 43(6):1004–1008. doi:10.1021/je9801260

    CAS  Google Scholar 

  89. Anouti M, Porion P, Brigouleix C, Galiano H, Lemordant D (2010) Transport properties in two pyrrolidinium-based protic ionic liquids as determined by conductivity, viscosity and NMR self-diffusion measurements. Fluid Phase Equilib 299(2):229–237. doi:10.1016/j.fluid.2010.09.035

    CAS  Google Scholar 

  90. Schreiner C, Zugmann S, Hartl R, Gores HJ (2009) Fractional Walden rule for ionic liquids: examples from recent measurements and a critique of the so-called ideal KCl line for the Walden plot†. J Chem Eng Data 55(5):1784–1788. doi:10.1021/je900878j

    Google Scholar 

  91. Longinotti MP, Corti HR (2009) Fractional Walden rule for electrolytes in supercooled disaccharide aqueous solutions. J Phys Chem B 113(16):5500–5507. doi:10.1021/jp810253s

    CAS  Google Scholar 

  92. García A, Torres-González LC, Padmasree KP, Benavides-Garcia MG, Sánchez EM (2013) Conductivity and viscosity properties of associated ionic liquids phosphonium orthoborates. J Mol Liq 178:57–62. doi:10.1016/j.molliq.2012.11.007

    Google Scholar 

  93. Porion P, Dougassa YR, Tessier C, El Ouatani L, Jacquemin J, Anouti M (2013) Comparative study on transport properties for LiFAP and LiPF6 in alkyl-carbonates as electrolytes through conductivity, viscosity and NMR self-diffusion measurements. Electrochim Acta 114:95–104. doi:10.1016/j.electacta.2013.10.015

    CAS  Google Scholar 

  94. Kao H-M, Chang P-C, Chao S-W, Lee C-H (2006) 7Li NMR, ionic conductivity and self-diffusion coefficients of lithium ion and solvent of plasticized organic–inorganic hybrid electrolyte based on PPG-PEG-PPG diamine and alkoxysilanes. Electrochim Acta 52(3):1015–1027. doi:10.1016/j.electacta.2006.06.042

    CAS  Google Scholar 

  95. Blanchard JW, Belières J-P, Alam TM, Yarger JL, Holland GP (2011) NMR determination of the diffusion mechanisms in triethylamine-based protic ionic liquids. J Phys Chem Lett 2(9):1077–1081. doi:10.1021/jz200357j

    CAS  Google Scholar 

  96. Reddy GSM, Jayaramudu J, Varaprasad K, Sadiku R, Jailani SA, Aderibigbe BA (2014) Chapter 9—Nanostructured liquid crystals. In: Thomas S, Shanks R, Chandrasekharakurup S (eds) Nanostructured polymer blends. William Andrew, Oxford, pp 299–324. doi:10.1016/B978-1-4557-3159-6.00009-2

    Google Scholar 

  97. Marcus Y (2013) Surface tension and cohesive energy density of molten salts. Thermochim Acta 571:77–81. doi:10.1016/j.tca.2013.08.018

    CAS  Google Scholar 

  98. Marcus Y (2010) The cohesive energy of molten salts and its density. J Chem Thermodyn 42(1):60–64. doi:10.1016/j.jct.2009.07.004

    CAS  Google Scholar 

  99. Frost DS, Nofen EM, Dai LL (2014) Particle self-assembly at ionic liquid-based interfaces. Adv Colloid Interface Sci 206:92–105. doi:10.1016/j.cis.2013.09.004

    CAS  Google Scholar 

  100. Weingärtner H (2013) NMR studies of ionic liquids: structure and dynamics. Curr Opin Colloid Interface Sci 18(3):183–189. doi:10.1016/j.cocis.2013.04.001

    Google Scholar 

  101. Men Y, Kuzmicz D, Yuan J (2014) Poly(ionic liquid) colloidal particles. Curr Opin Colloid Interface Sci 19(2):76–83. doi:10.1016/j.cocis.2014.03.012

    CAS  Google Scholar 

  102. Sakai H, Saitoh T, Endo T, Tsuchiya K, Sakai K, Abe M (2009) Phytosterol ethoxylates in room-temperature ionic liquids: excellent interfacial properties and gel formation. Langmuir 25(5):2601–2603. doi:10.1021/la900139d

    CAS  Google Scholar 

  103. Li P, Wang W, Du Z, Wang G, Li E, Li X (2014) Adsorption and aggregation behavior of surface active trisiloxane room-temperature ionic liquids. Colloids Surf A Physicochem Eng Asp 450:52–58. doi:10.1016/j.colsurfa.2014.03.007

    CAS  Google Scholar 

  104. Du Z, Li E, Cao Y, Li X, Wang G (2014) Synthesis of trisiloxane-tailed surface active ionic liquids and their aggregation behavior in aqueous solution. Colloids Surf A Physicochem Eng Asp 441:744–751. doi:10.1016/j.colsurfa.2013.10.004

    CAS  Google Scholar 

  105. Iida M, Kawakami S, Syouno E, Er H, Taguchi E (2011) Properties of ionic liquids containing silver(I) or protic alkylethylenediamine cations with a bis(trifluoromethanesulfonyl)amide anion. J Colloid Interface Sci 356(2):630–638. doi:10.1016/j.jcis.2011.01.070

    CAS  Google Scholar 

  106. Meot-Ner M (2012) Update 1 of: strong ionic hydrogen bonds. Chem Rev 112(10):PR22–PR103. doi:10.1021/cr200430n

    Google Scholar 

  107. Greaves TL, Kennedy DF, Mudie ST, Drummond CJ (2010) Diversity observed in the nanostructure of protic ionic liquids. J Phys Chem B 114(31):10022–10031. doi:10.1021/jp103863z

    CAS  Google Scholar 

  108. Fernández-Castro B, Méndez-Morales T, Carrete J, Fazer E, Cabeza O, Rodríguez JR, Turmine M, Varela LM (2011) Surfactant self-assembly nanostructures in protic ionic liquids. J Phys Chem B 115(25):8145–8154. doi:10.1021/jp203204c

    Google Scholar 

  109. Smith J, Webber GB, Warr GG, Atkin R (2014) Silica particle stability and settling in protic ionic liquids. Langmuir 30(6):1506–1513. doi:10.1021/la403978b

    CAS  Google Scholar 

  110. Scholten JD, Leal BC, Dupont J (2011) Transition metal nanoparticle catalysis in ionic liquids. ACS Catal 2(1):184–200. doi:10.1021/cs200525e

    Google Scholar 

  111. Anouti M, Mirghani A, Jacquemin J, Timperman L, Galiano H (2013) Tunable gold nanoparticles shape and size in reductive and structuring media containing protic ionic liquids. Ionics 19(12):1783–1790. doi:10.1007/s11581-013-0915-0

    CAS  Google Scholar 

  112. Anouti M, Jacquemin J (2014) Structuring reductive media containing protic ionic liquids and their application to the formation of metallic nanoparticles. Colloids Surf A Physicochem Eng Asp 445:1–11. doi:10.1016/j.colsurfa.2013.12.064

    CAS  Google Scholar 

  113. Vollmer C, Janiak C (2011) Naked metal nanoparticles from metal carbonyls in ionic liquids: easy synthesis and stabilization. Coord Chem Rev 255(17–18):2039–2057. doi:10.1016/j.ccr.2011.03.005

    CAS  Google Scholar 

  114. Suarez PAZ, Consorti CS, de Souza RF, Dupont J, Gonçalves RS (2002) Electrochemical behavior of vitreous glass carbon and platinum electrodes in the ionic liquid 1-n-butyl-3-methylimidazolium trifluoroacetate. J Braz Chem Soc 13(1):106–109

    CAS  Google Scholar 

  115. Zein El Abedin S, Borissenko N, Endres F (2004) Electrodeposition of nanoscale silicon in a room temperature ionic liquid. Electrochem Commun 6(5):510–514. doi:10.1016/j.elecom.2004.03.013

    CAS  Google Scholar 

  116. Matsumoto K, Inoue K, Nakahara K, Yuge R, Noguchi T, Utsugi K (2013) Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte. J Power Sources 231:234–238. doi:10.1016/j.jpowsour.2012.12.028

    CAS  Google Scholar 

  117. Kühnel R-S, Lübke M, Winter M, Passerini S, Balducci A (2012) Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes. J Power Sources 214:178–184. doi:10.1016/j.jpowsour.2012.04.054

    Google Scholar 

  118. Cho E, Mun J, Chae OB, Kwon OM, Kim H-T, Ryu JH, Kim YG, Oh SM (2012) Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries. Electrochem Commun 22:1–3. doi:10.1016/j.elecom.2012.05.018

    CAS  Google Scholar 

  119. Garcia B, Armand M (2004) Aluminium corrosion in room temperature molten salt. J Power Sources 132(1–2):206–208. doi:10.1016/j.jpowsour.2003.12.046

    CAS  Google Scholar 

  120. Timperman L, Skowron P, Boisset A, Galiano H, Lemordant D, Frackowiak E, Beguin F, Anouti M (2012) Triethylammonium bis(tetrafluoromethylsulfonyl)amide protic ionic liquid as an electrolyte for electrical double-layer capacitors. Phys Chem Chem Phys 14(22):8199–8207

    CAS  Google Scholar 

  121. Skyllas-Kazacos M (2010) 10-electro-chemical energy storage technologies for wind energy systems. In: Kaldellis JK (ed) Stand-alone and hybrid wind energy systems. Woodhead Publishing, Cambridge, pp 323–365. doi:10.1533/9781845699628.2.323

    Google Scholar 

  122. Koohi-Kamali S, Tyagi VV, Rahim NA, Panwar NL, Mokhlis H (2013) Emergence of energy storage technologies as the solution for reliable operation of smart power systems: a review. Renew Sustain Energy Rev 25:135–165. doi:10.1016/j.rser.2013.03.056

    Google Scholar 

  123. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613. doi:10.1021/cr100290v

    CAS  Google Scholar 

  124. Nishi Y (2014) 2–Past, present and future of lithium-ion batteries: can new technologies open up new horizons? In: Pistoia G (ed) Lithium-ion batteries. Elsevier, Amsterdam, pp 21–39. doi:10.1016/B978-0-444-59513-3.00002-9

    Google Scholar 

  125. Orecchini F, Santiangeli A, Dell’Era A (2014) 10–EVs and HEVs using lithium-ion batteries. In: Pistoia G (ed) Lithium-ion batteries. Elsevier, Amsterdam, pp 205–248. doi:10.1016/B978-0-444-59513-3.00010-8

    Google Scholar 

  126. Vezzini A (2014) 15–Lithium-ion battery management. In: Pistoia G (ed) Lithium-ion batteries. Elsevier, Amsterdam, pp 345–360. doi:10.1016/B978-0-444-59513-3.00015-7

    Google Scholar 

  127. Yoshino A (2014) 1–Development of the lithium-ion battery and recent technological trends. In: Pistoia G (ed) Lithium-ion batteries. Elsevier, Amsterdam, pp 1–20. doi:10.1016/B978-0-444-59513-3.00001-7

    Google Scholar 

  128. Chu A, Braatz P (2002) Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. initial characterization. J Power Sources 112(1):236–246. doi:10.1016/S0378-7753(02)00364-6

    CAS  Google Scholar 

  129. Thounthong P, Raël S, Davat B (2006) Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle. J Power Sources 158(1):806–814. doi:10.1016/j.jpowsour.2005.09.014

    CAS  Google Scholar 

  130. Karden E, Ploumen S, Fricke B, Miller T, Snyder K (2007) Energy storage devices for future hybrid electric vehicles. J Power Sources 168(1):2–11. doi:10.1016/j.jpowsour.2006.10.090

    CAS  Google Scholar 

  131. Yu Z, Zinger D, Bose A (2011) An innovative optimal power allocation strategy for fuel cell, battery and supercapacitor hybrid electric vehicle. J Power Sources 196(4):2351–2359. doi:10.1016/j.jpowsour.2010.09.057

    CAS  Google Scholar 

  132. Trovão JP, Pereirinha PG, Jorge HM, Antunes CH (2013) A multi-level energy management system for multi-source electric vehicles—an integrated rule-based meta-heuristic approach. App Energy 105:304–318. doi:10.1016/j.apenergy.2012.12.081

    Google Scholar 

  133. Hannan MA, Azidin FA, Mohamed A (2014) Hybrid electric vehicles and their challenges: a review. Renew Sustain Energy Rev 29:135–150. doi:10.1016/j.rser.2013.08.097

    Google Scholar 

  134. Inagaki M, Kang F, Toyoda M, Konno H (2014) Chapter 11–carbon materials for electrochemical capacitors. In: Inagaki M, Kang F, Toyoda M, Konno H (eds) Advanced materials science and engineering of carbon. Butterworth-Heinemann, Boston, pp 237–265. doi:10.1016/B978-0-12-407789-8.00011-9

    Google Scholar 

  135. Anouti M, Timperman L (2013) A pyrrolidinium nitrate protic ionic liquid-based electrolyte for very low-temperature electrical double-layer capacitors. Phys Chem Chem Phys 15(17):6539–6548

    CAS  Google Scholar 

  136. Mayrand-Provencher L, Rochefort D (2009) Influence of the conductivity and viscosity of protic ionic liquids electrolytes on the pseudocapacitance of RuO2 electrodes. J Phys Chem C 113(4):1632–1639. doi:10.1021/jp8084149

    CAS  Google Scholar 

  137. Mysyk R, Raymundo-Piñero E, Anouti M, Lemordant D, Béguin F (2010) Pseudo-capacitance of nanoporous carbons in pyrrolidinium-based protic ionic liquids. Electrochem Commun 12(3):414–417. doi:10.1016/j.elecom.2010.01.007

    CAS  Google Scholar 

  138. Brandt A, Pires J, Anouti M, Balducci A (2013) An investigation about the cycling stability of supercapacitors containing protic ionic liquids as electrolyte components. Electrochim Acta 108:226–231. doi:10.1016/j.electacta.2013.06.118

    CAS  Google Scholar 

  139. Timperman L, Galiano H, Lemordant D, Anouti M (2011) Phosphonium-based protic ionic liquid as electrolyte for carbon-based supercapacitors. Electrochem Commun 13(10):1112–1115. doi:10.1016/j.elecom.2011.07.010

    CAS  Google Scholar 

  140. Kalume A, George L, Cunningham N, Reid SA (2013) Concerted and sequential pathways of proton-coupled electron transfer in hydrogen halide elimination. Chem Phys Lett 556:35–38. doi:10.1016/j.cplett.2012.11.053

    CAS  Google Scholar 

  141. Gagliardi CJ, Westlake BC, Kent CA, Paul JJ, Papanikolas JM, Meyer TJ (2010) Integrating proton coupled electron transfer (PCET) and excited states. Coord Chem Rev 254(21–22):2459–2471. doi:10.1016/j.ccr.2010.03.001

    CAS  Google Scholar 

  142. Costentin C, Robert M, Savéant J-M (2006) Electrochemical concerted proton and electron transfers. Potential-dependent rate constant, reorganization factors, proton tunneling and isotope effects. J Electroanal Chem 588(2):197–206. doi:10.1016/j.jelechem.2005.12.027

    CAS  Google Scholar 

  143. Richey FW, Dyatkin B, Gogotsi Y, Elabd YA (2013) Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry. J Am Chem Soc 135(34):12818–12826. doi:10.1021/ja406120e

    CAS  Google Scholar 

  144. Zaidi W, Boisset A, Jacquemin J, Timperman L, Anouti M (2014) Deep eutectic solvents based on N-methylacetamide and a lithium salt as electrolytes at elevated temperature for activated carbon-based supercapacitors. J Phys Chem C 118(8):4033–4042. doi:10.1021/jp412552v

    CAS  Google Scholar 

  145. Yamada Y, Usui K, Chiang CH, Kikuchi K, Furukawa K, Yamada A (2014) General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Appl Mater Interfaces 6(14):10892–10899. doi:10.1021/am5001163

    CAS  Google Scholar 

  146. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430. doi:10.1016/j.jpowsour.2009.11.048

    CAS  Google Scholar 

  147. Catenacci M, Verdolini E, Bosetti V, Fiorese G (2013) Going electric: expert survey on the future of battery technologies for electric vehicles. Energy Policy 61:403–413. doi:10.1016/j.enpol.2013.06.078

    Google Scholar 

  148. Wadia C, Albertus P, Srinivasan V (2011) Resource constraints on the battery energy storage potential for grid and transportation applications. J Power Sources 196(3):1593–1598. doi:10.1016/j.jpowsour.2010.08.056

    CAS  Google Scholar 

  149. Kushnir D, Sandén BA (2012) The time dimension and lithium resource constraints for electric vehicles. Res Policy 37(1):93–103. doi:10.1016/j.resourpol.2011.11.003

    Google Scholar 

  150. Pollet BG, Staffell I, Shang JL (2012) Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects. Electrochim Acta 84:235–249. doi:10.1016/j.electacta.2012.03.172

    CAS  Google Scholar 

  151. Menne S, Pires J, Anouti M, Balducci A (2013) Protic ionic liquids as electrolytes for lithium-ion batteries. Electrochem Commun 31:39–41. doi:10.1016/j.elecom.2013.02.026

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mérièm Anouti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anouti, M. (2015). Room-Temperature Molten Salts: Protic Ionic Liquids and Deep Eutectic Solvents as Media for Electrochemical Application. In: Torriero, A. (eds) Electrochemistry in Ionic Liquids. Springer, Cham. https://doi.org/10.1007/978-3-319-13485-7_7

Download citation

Publish with us

Policies and ethics