Skip to main content
Log in

High capacity lithium-manganese-nickel-oxide composite cathodes with low irreversible capacity loss and good cycle life for lithium ion batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We report a method to eliminate the irreversible capacity of 0.4Li2MnO3·0.6LiNi0.5Mn0.5O2(Li1.17Ni0.25Mn0.583O2) by decreasing lithium content to yield integrated layered-spinel structures. XRD patterns, High-resolution TEM image and electrochemical cycling of the materials in lithium cells revealed features consistent with the presence of spinel phase within the materials. When discharged to about 2.8 V, the spinel phase of LiM2O4 (M=Ni, Mn) can transform to rock-salt phase of Li2M2O4 (M=Ni, Mn) during which the tetravalent manganese ions are reduced to an oxidation state of 3.0. So the spinel phase can act as a host to insert back the extracted lithium ions (from the layered matrix) that could not embed back into the layered lattice to eliminate the irreversible capacity loss and increase the discharge capacity. Their electrochemical properties at room temperature showed a high capacity (about 275 mAh g-1 at 0.1 C) and exhibited good cycling performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whittingham MS. Chem Rev, 2004, 104: 4271–4302

    Article  CAS  Google Scholar 

  2. Belharouak I, Lu W, Vissers D, Amine K. Electrochemistry Commun, 2006, 8: 329–335

    Article  CAS  Google Scholar 

  3. Abouimrane A, Compton OC, Deng H, Belharouak I, Dikin DA, Nguyen SBT, Amine K. Electrochem Solid-State Lett, 2011, 14: A126

    Article  CAS  Google Scholar 

  4. Kim MG, Jo M, Hong YS, Cho J. Chem Commun, 2009, 218–220

    Google Scholar 

  5. Croguennec L, Bains J, Ménétrier M, Flambard A, Bekaert E, Jordy C, Biensan P, Delmas C. J Electrochem Soc, 2009, 156: A349

    Article  CAS  Google Scholar 

  6. Gao J, Kim J, Manthiram A. Electrochemistry Commun, 2009, 11: 84–86

    Article  CAS  Google Scholar 

  7. Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ. Chem Mater, 2011, 23: 3614–3621

    Article  CAS  Google Scholar 

  8. Grey CP, Yoon WS, Reed J, Ceder G. Electrochem Solid-State Lett, 2004, 7: A290

    Article  CAS  Google Scholar 

  9. Grey CP, Dupré N. Chem Rev, 2004, 104: 4493–4512

    Article  CAS  Google Scholar 

  10. Yoon WS, Iannopollo S, Grey CP, Carlier D, Gorman J, Ceder G. Electrochem Solid-State Lett, 2004, 7: A167

    Article  CAS  Google Scholar 

  11. Lu Z, Dahn JR. J Electrochem Soc, 2002, 149: A815

    Article  CAS  Google Scholar 

  12. Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang S, Thackeray MM, Bruce PG. J Am Chem Soc, 2006, 128: 8694–8698

    Article  CAS  Google Scholar 

  13. Rossouw M, Thackeray M. Mater Res Bull, 1991, 26: 463–473

    Article  CAS  Google Scholar 

  14. Rossouw MH, Liles DC, Thackeray MM. J Solid State Chem, 1993, 104: 464–466

    Article  CAS  Google Scholar 

  15. Tang W, Kanoh H, Yang X, Ooi K. Chem Mater, 2000, 12: 3271–3279

    Article  CAS  Google Scholar 

  16. Paik Y, Grey CP, Johnson CS, Kim JS, Thackeray MM. Chem Mater, 2002, 14: 5109–5115

    Article  CAS  Google Scholar 

  17. Kang SH, Johnson CS, Vaughey JT, Amine K, Thackeray MM. J Electrochem Soc, 2006, 153: A1186

    Article  CAS  Google Scholar 

  18. Myung ST, Izumi K, Komaba S, Yashiro H, Bang HJ, Sun YK, Kumagai N. J Phys Chem C, 2007, 111: 4061–4067

    Article  CAS  Google Scholar 

  19. Myung ST, Izumi K, Komaba S, Sun YK, Yashiro H, Kumagai N. Chem Mater, 2005, 17: 3695–3704

    Article  CAS  Google Scholar 

  20. Kang YJ, Kim JH, Lee SW, Sun YK. Electrochim Acta, 2005, 50: 4784–4791

    Article  CAS  Google Scholar 

  21. Tan K, Reddy M, Rao G, Chowdari B. J Power Sources, 2005, 141: 129–142

    Article  CAS  Google Scholar 

  22. Zheng JM, Li J, Zhang ZR, Guo XJ, Yang Y. Solid State Ionics, 2008, 179: 1794–1799

    Article  CAS  Google Scholar 

  23. Xia Y. J Electrochem Soc, 1997, 144: 2593

    Article  CAS  Google Scholar 

  24. Zheng J, Deng S, Shi Z, Xu H, Xu H, Deng Y, Zhang Z, Chen G. J Power Sources, 2013, 221: 108–113

    Article  CAS  Google Scholar 

  25. Gao J, Kim J, Manthiram A. Electrochemistry Commun, 2009, 11: 84–86

    Article  CAS  Google Scholar 

  26. Wu Y. Vadivel Murugan A, Manthiram A. J Electrochem Soc, 2008, 155: A635

    Article  CAS  Google Scholar 

  27. Gao J, Manthiram A. J Power Sources, 2009, 191: 644–647

    Article  CAS  Google Scholar 

  28. Xia Y, Sakai T, Fujieda T, Yang XQ, Sun X, Ma ZF. McBreen J, Yoshio M. J Electrochem Soc, 2001, 148: A723

    Article  CAS  Google Scholar 

  29. Kim JS, Johnson CS, Vaughey JT, Thackeray MM, Hackney SA, Yoon W, Grey CP. Chem Mater, 2004, 16: 1996–2006

    Article  CAS  Google Scholar 

  30. Koga H, Croguennec L, Mannessiez P, Ménétrier M, Weill F, Bourgeois L, Duttine M, Suard E, Delmas C. J Phys Chem C, 2012, 116: 13497–13506

    Article  CAS  Google Scholar 

  31. Abouimrane A, Compton OC, Deng H, Belharouak I, Dikin DA, Nguyen SBT, Amine K. Electrochem Solid-State Lett, 2011, 14: A126

    Article  CAS  Google Scholar 

  32. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA. J Mater Chem, 2007, 17: 3112

    Article  CAS  Google Scholar 

  33. Ammundsen B, Paulsen J. Adv Mater, 2001, 13: 943–956

    Article  CAS  Google Scholar 

  34. Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S. J Am Chem Soc, 2011, 133: 4404–4419

    Article  CAS  Google Scholar 

  35. Johnson CS, Kim JS, Lefief C, Li N, Vaughey JT, Thackeray MM. Electrochemistry Commun, 2004, 6: 1085–1091

    Article  CAS  Google Scholar 

  36. Robertson AD, Bruce PG. Electrochem Solid-State Lett, 2004, 7: A294

    Article  CAS  Google Scholar 

  37. Park S, Kang S, Johnson C, Amine K, Thackeray M. Electrochemistry Commun, 2007, 9: 262–268

    Article  CAS  Google Scholar 

  38. Yu H, Kim H, Wang Y, He P, Asakura D, Nakamura Y, Zhou H. Phys Chem Chem Phys, 2012, 14: 6584

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinping Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Guo, X., Yao, S. et al. High capacity lithium-manganese-nickel-oxide composite cathodes with low irreversible capacity loss and good cycle life for lithium ion batteries. Sci. China Chem. 59, 1479–1485 (2016). https://doi.org/10.1007/s11426-016-0109-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0109-1

Keywords

Navigation