Skip to main content
Log in

Significant enhancement of crystallization kinetics of polylactide in its immiscible blends through an interfacial effect from comb-like grafted side chains

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A significant enhancement in isothermal crystallization kinetics of biodegradable polylactide (PLA) in its immiscible blends can be accomplished through blending it with a comb-like copolymer. PLA was blended with poly(ethylene glycol) methyl ether acrylate (PEGA) and poly[poly(ethylene glycol) methyl ether acrylate] (PPEGA, a comb-like copolymer), respectively. The results measured from phase contrast optical microscopy (PCOM) and differential scanning calorimetry (DSC) indicate that PLA and PEGA components are miscible, whereas PLA and PPEGA components are immiscible. The study of crystallization kinetics for PLA/PEGA and PLA/PPEGA blends by means of polarized optical microscopy (POM) and DSC indicates that both PEGA and PPEGA significantly increase the PLA spherulitic growth rates, G, although PLA/PPEGA blends are immiscible and the glass transition temperatures of PLA only have slight decreases. PPEGA component enhances nucleation for PLA crystallization as compared with PEGA component owing to the heterogeneous nucleation effect of PPEGA at the low composition of 20 wt%, while PLA crystallization-induced phase separation for PLA/PEGA blend might cause further nucleation at the high composition of 50 wt%. DSC measurement further demonstrates that isothermal crystallization kinetics can be relatively more enhanced for PLA/PPEGA blends than for PLA/PEGA blends. The “abnormal” enhancement in G for PLA in its immiscible blends can be explained by local interfacial interactions through the densely grafted PEGA side chains in the comb-like PPEGA, even though the whole blend system (PLA/PPEGA blends) represents an immiscible one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsarevsky NV, Matyjaszewski K. Chem Rev, 2007, 107: 2270–2299

    Article  CAS  Google Scholar 

  2. Stavber G, Malic B, Kosec M. Green Chem, 2011, 13: 1303–1310

    Article  CAS  Google Scholar 

  3. Ma QQ, Liu XQ, Zhang RY, Zhu J, Jiang YH. Green Chem, 2013, 15: 1300–1310

    Article  CAS  Google Scholar 

  4. Renouf-Glauser AC, Rose J, Farrar DF, Cameron RE. Biomaterials, 2005, 26: 5771–5782

    Article  CAS  Google Scholar 

  5. Xu H, Xie L, Jiang X, Hakkarainen M, Chen JB, Zhong GJ, Li ZM. Biomacromolecules, 2014, 15: 1676–1686

    Article  CAS  Google Scholar 

  6. Wei XF, Bao RY, Cao ZQ, Yang W, Xie BH, Yang MB. Macromolecules, 2014, 47: 1439–1448

    Article  CAS  Google Scholar 

  7. Saeidlou S, Huneault MA, Li HB, Park CB. Prog Polym Sci, 2012, 37: 1657–1677

    Article  CAS  Google Scholar 

  8. Miyata T, Masuko T. Polymer, 1997, 38: 4003–4009

    Article  CAS  Google Scholar 

  9. Robertson ML, Paxton JM, Hillmyer MA. ACS Appl Mater Interfaces, 2011, 3: 3402–3410

    Article  CAS  Google Scholar 

  10. Bitinis N, Sanz A, Nogales A, Verdejo R, Lopez-Manchado MA, Ezquerra TA. Soft Matter, 2012, 8: 8990–8997

    Article  CAS  Google Scholar 

  11. Fang HG, Jiang F, Wu QH, Ding YS, Wang ZG. ACS Appl Mater Inter, 2014, 6: 13552–13563

    Article  CAS  Google Scholar 

  12. Lee I, Panthani TR, Bates FS. Macromolecules, 2013, 46: 7387–7398

    Article  CAS  Google Scholar 

  13. Zhang YQ, Fang HG, Wang ZK, Tang M, Wang ZG. Cryst Eng Comm, 2014, 16: 1026–1037

    Article  CAS  Google Scholar 

  14. Zhang YQ, Jiang F, Wang WT, Wang ZG. J Phys Chem B, 2014, 118: 9112–9117

    Article  CAS  Google Scholar 

  15. Xu H, Xie L, Jiang X, Li XJ, Li Y, Zhang ZJ, Zhong GJ, Li ZM. J Phys Chem B, 2013, 118: 812–823

    Article  Google Scholar 

  16. Rahman N, Kawai T, Matsuba G, Nishida K, Kanaya T, Watanabe H, Okamoto H, Kato M, Usuki A, Matsuda M, Nakajima K, Honma N. Macromolecules, 2009, 42: 4739–4745

    Article  CAS  Google Scholar 

  17. Kuo SW, Huang WJ, Huang CF, Chan SC, Chang FC. Macromolecules, 2004, 37: 4164–4173

    Article  CAS  Google Scholar 

  18. Neelakandan C, Kyu T. J Phys Chem B, 2009, 113: 8520–8526

    Article  CAS  Google Scholar 

  19. Zhang YQ, Wang ZK, Jiang F, Bai J, Wang ZG. Soft Matter, 2013, 9: 5771–5778

    Article  CAS  Google Scholar 

  20. Talibuddin S, Wu L, Runt J, Lin JS. Macromolecules, 1996, 29: 7527–7535

    Article  CAS  Google Scholar 

  21. Di Lorenzo ML. Prog Polym Sci, 2003, 28: 663–689

    Article  Google Scholar 

  22. Yang JM, Chen HL, You JW, Hwang JC. Polym J, 1997, 29: 657–662

    Article  CAS  Google Scholar 

  23. Zhang YQ, Xu HJ, Yang JJ, Chen SY, Ding YS, Wang ZG. J Phys Chem C, 2013, 117: 5882–5893

    Article  CAS  Google Scholar 

  24. Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E. Polymer, 2003, 44: 5711–5720

    Article  CAS  Google Scholar 

  25. Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E. Polymer, 2003, 44: 5681–5689

    Article  CAS  Google Scholar 

  26. Silvestre C, Cimmino S, Di Pace E, Martuscelli E, Monaco M, Buzarovska A, Koseva S. Polym Networks Blends, 1996, 6: 73–80

    CAS  Google Scholar 

  27. Avella M, Martuscelli E, Orsello G, Raimo M, Pascucci B. Polymer, 1997, 38: 6135–6143

    Article  CAS  Google Scholar 

  28. Martuscelli E. Polym Eng Sci, 1984, 24: 563–586

    Article  CAS  Google Scholar 

  29. Yokoyama Y, Ricco T. J Appl Polym Sci, 1997, 66: 1007–1014

    Article  CAS  Google Scholar 

  30. Greco P, Martuscelli E. Polymer, 1989, 30: 1475–1483

    Article  CAS  Google Scholar 

  31. Cimmino S, Dipace E, Martuscelli E, Silvestre C, Buzarovska A, Slobodanka K. Polym Netw Blend, 1995, 5: 63–68

    CAS  Google Scholar 

  32. Marentette JM, Brown GR. Polymer, 1998, 39: 1415–1427

    Article  CAS  Google Scholar 

  33. Cascone E, David DJ, Di Lorenzo ML, Karasz FE, Macknight WJ, Martuscelli E, Raimo M. J Appl Polym Sci, 2001, 82: 2934–2946

    Article  CAS  Google Scholar 

  34. Sakai F, Nishikawa K, Inoue Y, Yazawa K. Macromolecules, 2009, 42: 8335–8342

    Article  CAS  Google Scholar 

  35. Zhang YQ, Xu ZH, Wang ZK, Ding YS, Wang ZG. RSC Adv, 2014, 4: 20582–20591

    Article  CAS  Google Scholar 

  36. Talibuddin S, Bunt J, Liu LZ, Chu B. Macromolecules, 1998, 31: 1627–1634

    Article  CAS  Google Scholar 

  37. Hoffman JD, Weeks JJ. J Res Nat Bureau Stand Section A-Phys Chem, 1962, 66: 13–28

    Article  Google Scholar 

  38. Ikehara T, Kurihara H, Qiu ZB, Nishi T. Macromolecules, 2007, 40: 8726–8730

    Article  CAS  Google Scholar 

  39. Xu ZH, Niu YH, Yang L, Xie WY, Li H, Gan ZH, Wang ZG. Polymer, 2010, 51: 730–737

    Article  CAS  Google Scholar 

  40. Wang ZG, Hsiao BS, Sauer BB, Kampert WG. Polymer, 1999, 40: 4615–4627

    Article  CAS  Google Scholar 

  41. Zhang XH, Wang ZG, Dong X, Wang DJ, Han CC. J Chem Phys, 2006, 125: 024907

    Article  Google Scholar 

  42. Tsuburaya M, Saito H. Polymer, 2004, 45: 1027–1032

    Article  CAS  Google Scholar 

  43. Bartczak Z, Galeski A, Krasnikova NP. Polymer, 1987, 28: 1627–1634

    Article  CAS  Google Scholar 

  44. Fang HG, Zhang YQ, Bai J, Wang ZG. Macromolecules, 2013, 46: 6555–6565

    Article  CAS  Google Scholar 

  45. Shao W, Zhang YQ, Wang ZG, Niu YH, Yue RJ, Hu WP. Ind Eng Chem Res, 2012, 51: 15953–15961

    Article  CAS  Google Scholar 

  46. Qiu JS, Xing CY, Cao XJ, Wang HT, Wang L, Zhao LP, Li YJ. Macromolecules, 2013, 46: 5806–5814

    Article  CAS  Google Scholar 

  47. Du J, Niu H, Dong JY, Dong X, Wang D, He A, Han CC. Macromolecules, 2008, 41: 1421–1429

    Article  CAS  Google Scholar 

  48. Graham PD, McHugh AJ. Macromolecules, 1998, 31: 2565–2568

    Article  CAS  Google Scholar 

  49. Zhao JC, Wang ZG, Niu YH, Hsiao BS, Piccarolo S. J Phys Chem B, 2012, 116: 147–153

    Article  CAS  Google Scholar 

  50. Xu ZH, Niu YH, Wang ZG, Li H, Yang L, Qiu J, Wang H. ACS Appl Mater Inter, 2011, 3: 3744–3753

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaqiong Zhang or Zhigang Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, Y., Jiang, F. et al. Significant enhancement of crystallization kinetics of polylactide in its immiscible blends through an interfacial effect from comb-like grafted side chains. Sci. China Chem. 59, 609–618 (2016). https://doi.org/10.1007/s11426-015-5515-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5515-6

Keywords

Navigation