Skip to main content
Log in

Effect of glutathione on in vivo biodistribution and clearance of surface-modified small Pd nanosheets

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Plasmonic Pd nanosheets have been emerging as promising materials for applying in near-infrared (NIR) photothermal therapy (PTT) of cancer. However, animal in mice studies indicated that the original synthesized poly(vinylpyrrolidone) (PVP)-protected small Pd nanosheets (Pd-PVP) and some further surface-modified small Pd nanosheets such as Pd-PEG(SH) easily accumulated in reticuloendothelial system (RES) organs (liver, spleen, etc.) and were difficult to be cleared from these organs quickly. In the work, we surprisingly found that glutathione (GSH) could promote the clearance of surface-modified small Pd nanosheets (e.g. Pd-PVP, Pd-PEG(SH) and Pd-GSH) from the RES organs efficiently. The effects of GSH on the biodistribution and clearance of different surface-modified Pd nanosheets were investigated. Our results indicated that these surface-modified Pd nanosheets with or without GSH added caused no morbidity at target primary organs, and GSH can promote the clearance of different surface-modified Pd nanosheets in the order of Pd-PVP≈Pd-PEG(SH)>Pd-GSH. This study suggests that glutathione could be an attractive reagent for promoting nanomaterials eliminated from the reticuloendothelial systems (RES).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer RP. Nanocarriers as an emerging platform for cancer therapy. Nat Nantechnol, 2007, 2: 751–760

    Article  CAS  Google Scholar 

  2. Li N, Zhao PX, Astruc D. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed, 2014, 53: 1756–1789

    Article  CAS  Google Scholar 

  3. Li XH, Zhang C, Le Guyader L, Chen CY. “Smart” nanomaterials for cancer therapy. Sci China Chem, 2010, 53: 2241–2249

    Article  CAS  Google Scholar 

  4. Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Deliv, 2012: 751075

    Google Scholar 

  5. Terentyuk G, Panfilova E, Khanadeev V, Chumakov D, Genina E, Bashkatov A, Tuchin V, Bucharskaya A, Maslyakova G, Khlebtsov N. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res, 2014, 7: 325–337

    Article  CAS  Google Scholar 

  6. Song FL, Ning HF, She HY, Wang JY, Peng XJ. A turn-on fluorescent probe for Au3+ based on rodamine derivative and its bioimaging application. Sci China Chem, 2014, 57: 1043–1047

    Article  CAS  Google Scholar 

  7. Wang B, He X, Zhang ZY, Zhao YL, Feng WY. Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res, 2013, 46: 761–769

    Article  CAS  Google Scholar 

  8. Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schaffler M, Takenaka S, Moller W, Schmid G, Simon U, Kreyling WG. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm, 2011, 77: 407–416

    Article  CAS  Google Scholar 

  9. Sadauskas E, Danscher G, Stoltenberg M, Vogel U, Larsen A, Wallin H. Protracted elimination of gold nanoparticles from mouse liver. Nanomed-Nanotechnol Biol Med, 2009, 5: 162–169

    Article  CAS  Google Scholar 

  10. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M. Toxicity of nanomaterials. Chem Soc Rev, 2012, 41: 2323–2343

    Article  CAS  Google Scholar 

  11. Guo L, Panderi I, Yan DD, Szulak K, Li YJ, Chen YT, Ma H, Niesen DB, Seeram N, Ahmed A, Yan BF, Pantazatos D, Lu W. A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity. ACS Nano, 2013, 7: 8780–8793

    Article  CAS  Google Scholar 

  12. Nel A, Xia T, Madler L, Li M. Toxic potential of materials at the nanolevel. Science, 2006, 311: 622–627

    Article  CAS  Google Scholar 

  13. Linkov I, Satterstrom FK, Corey LM. Nanotoxicology and nanomedicine: making hard decisions. Nanomed-Nanotechnol Biol Med, 2008, 4: 167–171

    Article  CAS  Google Scholar 

  14. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine, 2008, 3: 703–717

    Article  CAS  Google Scholar 

  15. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV. Renal clearance of quantum dots. Nat Biotechnol, 2007, 25: 1165–1170

    Article  CAS  Google Scholar 

  16. Liu W, Choi HS, Zimmer JP, Tanaka E, Frangioni JV, Bawendi M. Compact cysteine-coated CdSe(ZnCds) quantum dots for in vivo applications. J Am Chem Soc, 2007, 129: 14530–14531

    Article  CAS  Google Scholar 

  17. Zhou C, Long M, Qin Y, Sun XK, Zheng J. Luminescent gold nanoparticles with efficient renal clearance. Angew Chem Int Ed, 2011, 50: 3168–3172

    Article  CAS  Google Scholar 

  18. Liu J, Yu M, Zhou C, Yang SY, Ning XH, Zheng J. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. J Am Chem Soc, 2013, 135: 4978–4981

    Article  CAS  Google Scholar 

  19. Choi HS, Liu WH, Liu FB, Nasr K, Misra P, Bawendi MG, Frangioni JV. Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol, 2010, 5: 42–47

    Article  CAS  Google Scholar 

  20. Liu Z, Davis C, Cai WB, He L, Chen XY, Dai HJ. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by raman spectroscopy. P Natl Acad Sci USA, 2008, 105: 1410–1415

    Article  CAS  Google Scholar 

  21. He X, Zhang HF, Ma YH, Bai W, Zhang ZY, Lu K, Ding YY, Zhao YL, Chai ZF. Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnol, 2010, 21: 285103

    Article  Google Scholar 

  22. Abdelhalim MA, Jarrar BM. Gold nanoparticles administration induced prominent inflammatory, central vein intima disruption, fatty change and kupffer cells hyperplasia. Lipids Health Dis, 2011, 10: 133

    Article  CAS  Google Scholar 

  23. Chen Z, Meng H, Xing GM, Chen CY, Zhao YL, Jia G, Wang TC, Yuan H, Ye C, Zhao F, Chai ZF, Zhu CF, Fang XH, Ma BC, Wan LJ. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett, 2006, 163: 109–120

    Article  CAS  Google Scholar 

  24. Huang XQ, Tang SH, Mu XL, Dai Y, Chen GX, Zhou ZY, Ruan FX, Yang ZL, Zheng NF. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotechnol, 2011, 6: 28–32

    Article  CAS  Google Scholar 

  25. Tang SH, Chen M, Zheng NF. Sub-10-nm pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy. Small, 2014, 10: 3139–3144

    Article  CAS  Google Scholar 

  26. Nie LM, Chen M, Sun XL, Rong PF, Zheng NF, Chen XY. Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging. Nanoscale, 2014, 6: 1271–1276

    Article  CAS  Google Scholar 

  27. Zhao ZX, Shi SG, Huang YZ, Tang SH, Chen XL. Simultaneous photodynamic and photothermal therapy using photosensitizer-functionalized Pd nanosheets by single continuous wave laser. ACS Appl Mater Interf, 2014, 6: 8878–8885

    Article  CAS  Google Scholar 

  28. Zhao ZX, Huang YZ, Shi SG, Tang SH, Li DH, Chen XL. Cancer therapy improvement with mesoporous silica nanoparticles combining photodynamic and photothermal therapy. Nanotechnol, 2014, 25: 285701

    Article  CAS  Google Scholar 

  29. Fang WJ, Tang SH, Liu PX, Fang XL, Gong JW, Zheng NF. Pd nanosheet-covered hollow mesoporous silica nanoparticles as a platform for the chemo-photothermal treatment of cancer cells. Small, 2012, 8: 3816–3822

    Article  CAS  Google Scholar 

  30. Tang SH, Chen M, Zheng NF. Multifunctional ultrasmall Pd nanosheets for enhanced near-infrared photothermal therapy and chemotherapy of cancer. Nano Res, 2014, 8: 165–174

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolan Chen or Nanfeng Zheng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Chen, X., Shi, S. et al. Effect of glutathione on in vivo biodistribution and clearance of surface-modified small Pd nanosheets. Sci. China Chem. 58, 1753–1758 (2015). https://doi.org/10.1007/s11426-015-5422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5422-x

Keywords

Navigation