Skip to main content
Log in

Safety profile of two-dimensional Pd nanosheets for photothermal therapy and photoacoustic imaging

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) nanosheets have emerged as an important class of nanomaterial with great potential in the field of biomedicines, particularly in cancer theranostics. However, owing to the lack of effective methods that synthesize uniform 2D nanomaterials with controlled size, systematic evaluation of size-dependent bio-behaviors of 2D nanomaterials is rarely reported. To the best of our knowledge, we are the first to report a systematic evaluation of the influence of size of 2D nanomaterials on their bio-behaviors. 2D Pd nanosheets with diameters ranging from 5 to 80 nm were synthesized and tested in cell and animal models to assess their size-dependent bioapplication, biodistribution, elimination, toxicity, and genomic gene expression profiles. Our results showed size significantly influences the biological behaviors of Pd nanosheets, including their photothermal and photoacoustic effects, pharmacokinetics, and toxicity. Compared to larger-sized Pd nanosheets, smaller-sized Pd nanosheets exhibited more advanced photoacoustic imaging and photothermal effects upon ultralow laser irradiation. Moreover, in vivo results indicated that 5-nm Pd nanosheets escape from the reticuloendothelial system with a longer blood half-life and can be cleared by renal excretion, while Pd nanosheets with larger sizes mainly accumulate in the liver and spleen. The 30-nm Pd nanosheets exhibited the highest tumor accumulation. Although Pd nanosheets did not cause any appreciable toxicity at the cellular level, we observed slight lipid accumulation in the liver and inflammation in the spleen. Genomic gene expression analysis showed that 80-nm Pd nanosheets interacted with more cellular components and affected more biological processes in the liver, as compared to 5-nm Pd nanosheets. We believe this work will provide valuable information and insights into the clinical application of 2D Pd nanosheets as nanomedicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, Z. X.; Huang, X.; Tan, C. L.; Zhang, H. Thin metal nanostructures: Synthesis, properties and applications. Chem. Sci. 2015, 6, 95–111.

    Article  Google Scholar 

  2. Zhang, X. D.; Xie, Y. Recent advances in free-standing two-dimensional crystals with atomic thickness: Design, assembly and transfer strategies. Chem. Soc. Rev. 2013, 42, 8187–8199.

    Article  Google Scholar 

  3. Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509–11539.

    Article  Google Scholar 

  4. Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 1102–1120.

    Article  Google Scholar 

  5. Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 2013, 42, 2824–2860.

    Article  Google Scholar 

  6. Sun, Z. Q.; Liao, T.; Dou, Y. H.; Hwang, S. M.; Park, M.-S.; Jiang, L.; Kim, J. H.; Dou, S. X. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 2014, 5, 3813.

    Google Scholar 

  7. Yang, K.; Feng, L. Z.; Shi, X. Z.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev. 2013, 42, 530–547.

    Article  Google Scholar 

  8. Chimene, D.; Alge, D. L.; Gaharwar, A. K. Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Adv. Mater. 2015, 27, 7261–7284.

    Article  Google Scholar 

  9. Zhao, Z. L.; Fan, H. H.; Zhou, G. F.; Bai, H. R.; Liang, H.; Wang, R. W.; Zhang, X. B.; Tan, W. H. Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. J. Am. Chem. Soc. 2014, 136, 11220–11223.

    Article  Google Scholar 

  10. Fan, H. H.; Zhao, Z. L.; Yan, G. B.; Zhang, X. B.; Yang, C.; Meng, H. M.; Chen, Z.; Liu, H.; Tan, W. H. A smart DNAzyme–MnO2 nanosystem for efficient gene silencing. Angew. Chem., Int. Ed. 2015, 127, 4883–4887.

    Article  Google Scholar 

  11. Qian, X. X.; Shen, S. D.; Liu, T.; Cheng, L.; Liu, Z. Twodimensional TiS2 nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy. Nanoscale 2015, 7, 6380–6387.

    Article  Google Scholar 

  12. Cheng, L.; Yuan, C.; Shen, S. D.; Yi, X.; Gong, H.; Yang, K.; Liu, Z. Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics. ACS Nano 2015, 9, 11090–11101.

    Article  Google Scholar 

  13. Li, J.; Jiang, F.; Yang, B.; Song, X. R.; Liu, Y.; Yang, H. H.; Cao, D. R.; Shi, W. R.; Chen, G. N. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci. Rep. 2013, 3, 1998.

    Google Scholar 

  14. Yin, W. Y.; Yan, L.; Yu, J.; Tian, G.; Zhou, L. J.; Zheng, X. P.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z. J. et al. Highthroughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922–6933.

    Article  Google Scholar 

  15. Miao, W. J.; Shim, G.; Lee, S.; Oh, Y.-K. Structuredependent photothermal anticancer effects of carbon-based photoresponsive nanomaterials. Biomaterials 2014, 35, 4058–4065.

    Article  Google Scholar 

  16. Chen, M.; Tang, S. H.; Guo, Z. D.; Wang, X. Y.; Mo, S. G.; Huang, X. Q.; Liu, G.; Zheng, N. F. Core–shell Pd@Au nanoplates as theranostic agents for in-vivo photoacoustic imaging, CT imaging, and photothermal therapy. Adv. Mater. 2014, 26, 8210–8216.

    Article  Google Scholar 

  17. Lavik, E.; von Recum, H. The role of nanomaterials in translational medicine. ACS Nano 2011, 5, 3419–3424.

    Article  Google Scholar 

  18. Song, X. J.; Chen, Q.; Liu, Z. Recent advances in the development of organic photothermal nano-agents. Nano Res. 2015, 8, 340–354.

    Article  Google Scholar 

  19. Liu, T.; Chao, Y.; Gao, M.; Liang, C.; Song, G. S.; Cheng, L.; Liu, Z. Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. Nano Res. 2016, 9, 3003–3017.

    Article  Google Scholar 

  20. Ma, X. W.; Zhao, Y. L.; Liang, X. J. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc. Chem. Res. 2011, 44, 1114–1122.

    Article  Google Scholar 

  21. Xiao, Z. Y.; Xu, C. T.; Jiang, X. H.; Zhang, W. L.; Peng, Y. X.; Zou, R. J.; Huang, X. J.; Liu, Q.; Qin, Z. Y.; Hu, J. Q. Hydrophilic bismuth sulfur nanoflower superstructures with an improved photothermal efficiency for ablation of cancer cells. Nano Res. 2016, 9, 1934–1947.

    Article  Google Scholar 

  22. Huang, J.; Bu, L. H.; Xie, J.; Chen, K.; Cheng, Z.; Li, X. G.; Chen, X. Y. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 2010, 4, 7151–7160.

    Article  Google Scholar 

  23. Shi, S. G.; Huang, Y. Z.; Chen, X. L.; Weng, J.; Zheng, N. F. Optimization of surface coating on small Pd nanosheets for in vivo near-infrared photothermal therapy of Tumor. ACS Appl. Mater. Interfaces 2015, 7, 14369–14375.

    Article  Google Scholar 

  24. Liu, X. W.; Tao, H. Q.; Yang, K.; Zhang, S.; Lee, S.-T.; Liu, Z. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 2011, 32, 144–151.

    Article  Google Scholar 

  25. Yang, K.; Wan, J. M.; Zhang, S.; Tian, B.; Zhang, Y. J.; Liu, Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 2012, 33, 2206–2214.

    Article  Google Scholar 

  26. Decuzzi, P.; Godin, B.; Tanaka, T.; Lee, S. Y.; Chiappini, C.; Liu, X.; Ferrari, M. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release 2010, 141, 320–327.

    Article  Google Scholar 

  27. Reuter, K. G.; Perry, J. L.; Kim, D.; Luft, J. C.; Liu, R. H.; DeSimone, J. M. Targeted PRINT hydrogels: The role of nanoparticle size and ligand density on cell association, biodistribution, and tumor accumulation. Nano Lett. 2015, 15, 6371–6378.

    Article  Google Scholar 

  28. Helle, M.; Rampazzo, E.; Monchanin, M.; Marchal, F.; Guillemin, F.; Bonacchi, S.; Salis, F.; Prodi, L.; Bezdetnaya, L. Surface chemistry architecture of silica nanoparticles determine the efficiency of in vivo fluorescence lymph node mapping. ACS Nano 2013, 7, 8645–8657.

    Article  Google Scholar 

  29. Liu, Y.; Zhao, Y. L.; Sun, B. Y.; Chen, C. Y. Understanding the toxicity of carbon nanotubes. Acc. Chem. Res. 2013, 46, 702–713.

    Article  Google Scholar 

  30. Ma, J.; Liu, R.; Wang, X.; Liu, Q.; Chen, Y.; Valle, R. P.; Zuo, Y. Y.; Xia, T.; Liu, S. J. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano 2015, 9, 10498–10515.

    Article  Google Scholar 

  31. Nel, A.; Xia, T.; Meng, H.; Wang, X.; Lin, S. J.; Ji, Z. X.; Zhang, H. Y. Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and highthroughput screening. Acc. Chem. Res. 2013, 46, 607–621.

    Article  Google Scholar 

  32. Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and gatalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

    Article  Google Scholar 

  33. Tang, S. H.; Chen, M.; Zheng, N. F. Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy. Small 2014, 10, 3139–3144.

    Article  Google Scholar 

  34. Tang, S. H.; Chen, M.; Zheng, N. F. Multifunctional ultrasmall Pd nanosheets for enhanced near-infrared photothermal therapy and chemotherapy of cancer. Nano Res. 2015, 8, 165–174.

    Article  Google Scholar 

  35. Nie, L. M.; Chen, M.; Sun, X. L.; Rong, P. F.; Zheng, N. F.; Chen, X. Y. Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic Molecular imaging. Nanoscale 2014, 6, 1271–1276.

    Article  Google Scholar 

  36. Fang, W. J.; Tang, S. H.; Liu, P. X.; Fang, X. L.; Gong, J. W.; Zheng, N. F. Pd nanosheet-covered hollow mesoporous silica nanoparticles as a platform for the chemo-photothermal treatment of cancer cells. Small 2012, 8, 3816–3822.

    Article  Google Scholar 

  37. Huang, X. Q.; Tang, S. H.; Liu, B. J.; Ren, B.; Zheng, N. F. Enhancing the photothermal stability of plasmonic metal nanoplates by a core–shell architecture. Adv. Mater. 2011, 23, 3420–3425.

    Article  Google Scholar 

  38. Fang, W. J.; Yang, J.; Gong, J. W.; Zheng, N. F. Photo-and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv. Funct. Mater. 2012, 22, 842–848.

    Article  Google Scholar 

  39. Tang, S. H.; Huang, X. Q.; Zheng, N. F. Silica coating improves the efficacy of Pd nanosheets for photothermal therapy of cancer cells using near infrared laser. Chem. Commun. 2011, 47, 3948–3950.

    Article  Google Scholar 

  40. Dumas, A.; Couvreur, P. Palladium: A future key player in the nanomedical field? Chem. Sci. 2015, 6, 2153–2157.

    Google Scholar 

  41. Mo, S. G.; Chen, X. L.; Chen, M.; He, C. Y.; Lu, Y. H.; Zheng, N. F. Two-dimensional antibacterial Pd@Ag nanosheets with a synergetic effect of plasmonic heating and Ag+ release. J. Mater. Chem. B 2015, 3, 6255–6260.

    Article  Google Scholar 

  42. Shi, S. G.; Zhu, X. L.; Zhao, Z. X.; Fang, W. J.; Chen, M.; Huang, Y. Z.; Chen, X. L. Photothermally enhanced photodynamic therapy based on mesoporous Pd@Ag@mSiO2 nanocarriers. J. Mater. Chem. B 2013, 1, 1133–1141.

    Article  Google Scholar 

  43. Huang, Y. Z.; Chen, X. L.; Shi, S. G.; Chen, M.; Tang, S. H.; Mo, S. G.; Wei, J. P.; Zheng, N. F. Effect of glutathione on in vivo biodistribution and clearance of surface-modified small Pd nanosheets. Sci. China Chem. 2015, 58, 1753–1758.

    Article  Google Scholar 

  44. Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H. L.; Luong, R.; Dai, H. J. High performance in vivo near-IR (>1 µm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779–793.

    Article  Google Scholar 

  45. Zhang, F.; Cao, J. B.; Chen, X.; Yang, K.; Zhu, L.; Fu, G. F.; Huang, X. L.; Chen, X. Y. Noninvasive dynamic imaging of tumor early response to nanoparticle-mediated photothermal therapy. Theranostics 2015, 5, 1444–1455.

    Article  Google Scholar 

  46. Andón, F. T.; Fadeel, B. Programmed cell death: Molecular mechanisms and implications for safety assessment of nanomaterials. Acc. Chem. Res. 2013, 46, 733–742.

    Article  Google Scholar 

  47. Roy, K.; Kanwar, R. K.; Kanwar, J. R. LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging. Biomaterials 2015, 71, 84–99.

    Article  Google Scholar 

  48. Khlebtsov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647–1671.

    Article  Google Scholar 

  49. Nurunnabi, M.; Khatun, Z.; Huh, K. M.; Park, S. Y.; Lee, D. Y.; Cho, K. J.; Lee, Y.-K. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 2013, 7, 6858–6867.

    Article  Google Scholar 

  50. Yong, Y.; Zhou, L. J.; Gu, Z. J.; Yan, L.; Tian, G.; Zheng, X. P.; Liu, X. D.; Zhang, X.; Shi, J. X.; Cong, W. S. et al. WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale 2014, 6, 10394–10403.

    Article  Google Scholar 

  51. Matesanz, M.-C.; Vila, M.; Feito, M.-J.; Linares, J.; Gonçalves, G.; Vallet-Regi, M.; Marques, P.-A. A.; Portolés, M.-T. The effects of graphene oxide nanosheets localized on f-actin filaments on cell-cycle alterations. Biomaterials 2013, 34, 1562–1569.

    Article  Google Scholar 

  52. Liu, J. J.; Yang, Z. X.; Li, H. T.; Gu, Z. L.; Garate, J. A.; Zhou, R. H. Dewetting transition assisted clearance of (NFGAILS) amyloid fibrils from cell membranes by graphene. J. Chem. Phys. 2014, 141, 22D520.

    Google Scholar 

  53. Wu, L.; Parekh, V. V.; Gabriel, C. L.; Bracy, D. P.; Marks-Shulman, P. A.; Tamboli, R. A.; Kim, S.; Mendez-Fernandez, Y. V.; Besra, G. S.; Lomenick, J. P. et al. Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proc. Natl. Acad. Sci. USA 2012, 109, E1143–E1152.

    Article  Google Scholar 

  54. Zhang, X.; Zhang, J. H.; Chen, X. Y.; Hu, Q. H.; Wang, M. X.; Jin, R.; Zhang, Q.-Y.; Wang, W.; Wang, R.; Kang, L. L. et al. Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxid. Redox Signal. 2015, 22, 848–870.

    Article  Google Scholar 

  55. Feito, M. J.; Vila, M.; Matesanz, M. C.; Linares, J.; Gonçalves, G.; Marques, P. A. A. P.; Vallet-Regí, M.; Rojo, J. M.; Portolés, M. T. In vitro evaluation of graphene oxide nanosheets on immune function. J. Colloid Interface Sci. 2014, 432, 221–228.

    Article  Google Scholar 

  56. Tu, Y. S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594–601.

    Article  Google Scholar 

  57. Guo, R. H.; Mao, J.; Yan, L.-T. Computer simulation of cell entry of graphene nanosheet. Biomaterials 2013, 34, 4296–4301.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (Nos. 2014CB932004 and 2015CB932303) and the National Natural Science Foundation of China (Nos. 21420102001, 21131005 and 81422023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Liu or Nanfeng Zheng.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Chen, S., He, C. et al. Safety profile of two-dimensional Pd nanosheets for photothermal therapy and photoacoustic imaging. Nano Res. 10, 1234–1248 (2017). https://doi.org/10.1007/s12274-016-1349-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1349-6

Keywords

Navigation