Skip to main content
Log in

A comparative study in structure and reactivity of “FeO x -on-Pt” and “NiO x -on-Pt” catalysts

  • Articles
  • Special Issue In Honor of the 100th Birthday of Prof. Khi-Rui Tsai
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Oxide nanostructures grown on noble metal surfaces are often highly active in many reactions, in which the oxide/metal interfaces play an important role. In the present work, we studied the surface structures of FeO x -on-Pt and NiO x -on-Pt catalysts and their activity to CO oxidation reactions using both model catalysts and supported nanocatalysts. Although the active FeO1−x structure is stabilized on the Pt surface in a reductive reaction atmosphere, it is prone to change to an FeO2−x structure in oxidative reaction gases and becomes deactivated. In contrast, a NiO1−x surface structure supported on Pt is stable in both reductive and oxidative CO oxidation atmospheres. Consequently, CO oxidation over the NiO1−x -on-Pt catalyst is further enhanced in the CO oxidation atmosphere with an excess of O2. The present results demonstrate that the stability of the active oxide surface phases depends on the stabilization effect of the substrate surface and is also related to whether the oxide exhibits a variable oxidation state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tauster SJ. Strong metal-support interactions. Acc Chem Res, 1987, 20: 389–394

    Article  CAS  Google Scholar 

  2. Fu Q, Wagner T. Interaction of nanostructured metal overlayers with oxide surfaces. Surf Sci Rep, 2007, 62: 431–498

    Article  CAS  Google Scholar 

  3. Haruta M, Date M. Advances in the catalysis of au nanoparticles. Appl Catal A: Gen, 2001, 222: 427–437

    Article  CAS  Google Scholar 

  4. Goodman DW, Chen MS. Catalytically active gold on ordered titania supports. Chem Soc Rev, 2008, 37: 1860–1870

    Article  Google Scholar 

  5. Kiely CJ, Herzing AA, Carley AF, Landon P, Hutchings GJ. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science, 2008, 321: 1331–1335

    Article  Google Scholar 

  6. Ligthart DAJM, Van Santen RA, Hensen EJM. Supported rhodium oxide nanoparticles as highly active CO oxidation catalysts. Angew Chem Int Ed, 2011, 50: 5306–5310

    Article  CAS  Google Scholar 

  7. Surnev S, Schoiswohl J, Kresse G, Ramsey MG, Netzer FP. Reversible dynamic behavior in catalyst systems: oscillations of structure and morphology. Phys Rev Lett, 2002, 89: 246101

    Article  CAS  Google Scholar 

  8. Freund HJ. Metal-supported ultrathin oxide film systems as designable catalysts and catalyst supports. Surf Sci, 2007, 601: 1438–1442

    Article  CAS  Google Scholar 

  9. Fu Q, Yang F, Bao XH. Interface-confined oxide nanostructures for catalytic oxidation reactions. Acc Chem Res, 2013, 46: 1692–1701

    Article  CAS  Google Scholar 

  10. Sun YN, Giordano L, Goniakowski J, Lewandowski M, Qin ZH, Noguera C, Shaikhutdinov S, Pacchioni G, Freund HJ. The interplay between structure and CO oxidation catalysis on metal-supported ultrathin oxide films. Angew Chem Int Ed, 2010, 49: 4418–4421

    Article  CAS  Google Scholar 

  11. Sun DP, Gu XK, Ouyang RH, Su HY, Fu Q, Bao XH, Li WX. Theoretical study of the role of a metal-cation ensemble at the oxide-metal boundary on CO oxidation. J Phys Chem C, 2012, 116: 7491–7498

    Article  CAS  Google Scholar 

  12. Martynova Y, Liu BH, McBriarty ME, Groot IMN, Bedzyk MJ, Shaikhutdinov S, Freund HJ. CO oxidation over ZnO films on Pt(111) at near-atmospheric pressures. J Catal, 2013, 301: 227–232

    Article  CAS  Google Scholar 

  13. Sun YN, Qin ZH, Lewandowski M, Kaya S, Shaikhutdinov S, Freund HJ. When an encapsulating oxide layer promotes reaction on noble metals: dewetting and in situ formation of an “inverted” FeO(x)/Pt catalyst. Catal Lett, 2008, 126: 31–35

    Article  CAS  Google Scholar 

  14. Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Pérez M. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science, 2007, 318: 1757–1760

    Article  CAS  Google Scholar 

  15. Fu Q, Li WX, Yao YX, Liu HY, Su HY, Ma D, Gu XK, Chen LM, Wang Z, Zhang H, Wang B, Bao XH. Interface-confined ferrous centers for catalytic oxidation. Science, 2010, 328: 1141–1144

    Article  CAS  Google Scholar 

  16. Chen G, Zhao Y, Fu G, Duchesne PN, Gu L, Zheng Y, Weng X, Chen M, Zhang P, Pao CW, Lee JF, Zheng N. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science, 2014, 344: 495–499

    Article  CAS  Google Scholar 

  17. Yao YX, Fu Q, Wang Z, Tan DL, Bao XH. Growth and characterization of two-dimensional FeO nanoislands supported on Pt(111). J Phys Chem C, 2010, 114: 17069–17079

    Article  CAS  Google Scholar 

  18. Mu R, Fu Q, Xu H, Zhang H, Huang YY, Jiang Z, Zhang S, Tan DL, Bao XH. Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation. J Am Chem Soc, 2011, 133: 1978–1986

    Article  CAS  Google Scholar 

  19. Mu R, Guo X, Fu Q, Bao XH. Oscillation of surface structure and reactivity of PtNi bimetallic catalysts with redox treatments at variable temperatures. J Phys Chem C, 2011, 115: 20590–20595

    Article  CAS  Google Scholar 

  20. Fu Q, Yao YX, Guo XG, Wei MM, Ning YX, Liu HY, Yang F, Liu Z, Bao XH. Reversible structural transformation of FeOx nanostructures on Pt under cycling redox conditions and its effect on oxidation catalysis. Phys Chem Chem Phys, 2013, 15: 14708–14714

    Article  CAS  Google Scholar 

  21. Wei MM, Fu Q, Dong AY, Wang ZJ, Bao XH. Coverage and substrate effects on the structural change of FeOx nanostuctures supported on Pt. Top Catal, 2014, 57: 890–898

    Article  CAS  Google Scholar 

  22. Bender M, Alshamery K, Freund HJ. Sodium adsorption and reaction on NiO(111)/Ni(111). Langmuir, 1994, 10: 3081–3085

    Article  CAS  Google Scholar 

  23. Ma T, Fu Q, Su HY, Liu HY, Cui Y, Wang Z, Mu RT, Li WX. Reversible structural modulation of Fe-Pt bimetallic surfaces and its effect on reactivity. ChemPhysChem, 2009, 10: 1013–1016

    Article  CAS  Google Scholar 

  24. Tsilimis G, Fecher GH, Braun J, Kutzner J, Zacharias H. Observation of high-energy Pt(111) surface resonances excited by laser-generated XUV radiation. Appl Phys A-Mater Sci Proc, 2004, 78: 177–181

    Article  CAS  Google Scholar 

  25. Tsilimis G, Kutzner J, Zacharias H. Photoemission study of clean and c(4×2)-2CO-covered Pt(111) using high-harmonic radiation. Appl Phys A-Mater Sci Proc, 2003, 76: 743–749

    Article  CAS  Google Scholar 

  26. Li BT, Kado S, Mukainakano Y, Nurunnabi M, Miyao T, Naito S, Kunimori K, Tomishige K. Temperature profile of catalyst bed during oxidative steam reforming of methane over Pt-Ni bimetallic catalysts. Appl Catal A: Gen, 2006, 304: 62–71

    Article  CAS  Google Scholar 

  27. Chen MS, Cal Y, Yan Z, Gath KK, Axnanda S, Waune D, Goodman W. Highly active surfaces for CO oxidation on Rh, Pd, and Pt. Surf Sci, 2007, 601: 5326–5331

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Fu or Xinhe Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, R., Fu, Q., Guo, X. et al. A comparative study in structure and reactivity of “FeO x -on-Pt” and “NiO x -on-Pt” catalysts. Sci. China Chem. 58, 162–168 (2015). https://doi.org/10.1007/s11426-014-5266-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5266-9

Keywords

Navigation