Skip to main content
Log in

Complexation of uranyl ions by N-(sulfoethyl)-iminodiacetic acid: Hydrothermal synthesis, luminescence, and uranyl sequestration

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Reported here is a water-soluble ligand, N-(sulfoethyl)-iminodiacetic acid (H3SEIDA), used for the complexation of uranyl ions. A coordination compound composed of uranyl cation and N-(sulfonatoethyl)-ammoniodiacetate (SEADA2−) zwitterion was synthesized from an acidic aqueous solution. This compound features a 2D undulating fes (4.82) coordination layer that is stacked and linked by hydrogen-bonding interaction to form a 3D supramolecular framework with a 1D larger-cycle channel. Thermal analysis demonstrates the relatively weak bonding between uranyl cation and SEADA2− zwitterion. The monomeric uranyl-based fluorescence emission is red-shifted by about 5 nm compared to that of uranyl nitrate hexahydrate. The hydrothermal synthesis of this uranyl compound was successfully applied to the sequestration of uranyl ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang KX, Chen JS. Extended structures and physicochemical properties of uranyl-organic compounds. Acc Chem Res, 2011, 44: 531–540

    Article  CAS  Google Scholar 

  2. Andrews MB, Cahill CL. Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures. Chem Rev, 2013, 113: 1121–1136

    Article  CAS  Google Scholar 

  3. Nash KL, Horwitz EP, Diamond H, Rickert PG, Muntean JV, Mendoza MD, Di Giuseppe G. Selective separation of uranyl ion from tru’s in a combined solvent extraction process using tetrahydrofuran-2,3,4,5-tetracarboxylic acid. Solvent Extr Ion Exch, 1996, 14: 13–33

    Article  CAS  Google Scholar 

  4. Morss LR, Nash KL, Ensor DD. Thermodynamics of lanthanide and uranyl complexes with tetrahydrofuran-2,3,4,5-tetracarboxylic acid (THFTCA). J Chem Soc, Dalton Trans, 2000: 285–291

    Google Scholar 

  5. Sather AC, Berryman OB, Rebek Jr J. Selective recognition and extraction of the uranyl ion. J Am Chem Soc, 2010, 132: 13572–13574

    Article  CAS  Google Scholar 

  6. Riisiö A, Väisänen A, Sillanpää R. Uranyl complexes of alkylbridged ditopic diaminotetraphenol ligands and their use as uranyl ion extractors. Inorg Chem, 2013, 52: 8591–8600

    Article  Google Scholar 

  7. Tokunaga TK, Kim Y, Wan J. Potential remediation approach for uranium-contaminated groundwaters through potassium uranyl vanadate precipitation. Environ Sci Technol, 2009, 43: 5467–5471

    Article  CAS  Google Scholar 

  8. Tokunaga TK, Kim Y, Wan J, Yang L. Aqueous uranium(VI) concentrations controlled by calcium uranyl vanadate precipitates. Environ Sci Technol, 2012, 46: 7471–7477

    Article  CAS  Google Scholar 

  9. Rao L, Garnov AY, Jiang J, Di Bernardo P, Zanonato P, Bismondo A. Complexation of uranium(VI) and samarium(III) with oxydiacetic acid: temperature effect and coordination modes. Inorg Chem, 2003, 42: 3685–3692

    Article  CAS  Google Scholar 

  10. Di Bernardo P, Zanonato P, Bismondo A, Jiang H, Garnov AY, Jiang J, Rao L. Complexation of uranium(VI) with thiodiacetic acid in solution at 10–85 °C. Eur J Inorg Chem, 2006: 4533–4540

    Google Scholar 

  11. Liao ZL, Li GD, Bi MH, Chen JS. Preparation, structures, and photocatalytic properties of three new uranyl-organic assembly compounds. Inorg Chem, 2008, 47: 4844–4853

    Article  CAS  Google Scholar 

  12. Zheng YZ, Tong ML, Chen XM. Synthesis, structure and photoluminescent studies of two novel layered uranium coordination polymers constructed from UO(OH) polyhedral and pyridinedicarboxylates. Eur J Inorg Chem, 2005: 4109–4117

    Google Scholar 

  13. Schlosser F, Kru1ger S, Rö1sch N. A density functional study of uranyl monocarboxylates. Inorg Chem, 2006, 45: 1480–1490

    Article  CAS  Google Scholar 

  14. Videnova-Adrabinska V. Coordination and supramolecular network entanglements of organodisulfonates. Coord Chem Rev, 2007, 251: 1987–2016

    Article  CAS  Google Scholar 

  15. Kläui W, Berghahn M, Rheinwald G, Lang H. Tris(pyrazolyl)methanesulfonates: a novel class of water-soluble ligands. Angew Chem Int Ed, 2000, 39: 2464–2466

    Article  Google Scholar 

  16. Henge-Napoli MH, Archimbaud M, Ansoborlo E, Metivier H, Gourmelon P. Efficacy of 3,4,3-LIHOPO for reducing the retention of uranium in rat after acute administration. Int J Radiat Biol, 1995, 68: 389–393

    Article  CAS  Google Scholar 

  17. Henge-Napoli MH, Ansoborlo E, Chazel V, Houpert P, Paquet F. Gourmelon P. Efficacy of ethane-1-hydroxy-1,1-bisphosphonate (EHBP) for the decorporation of uranium after intramuscular contamination in rats. Int J Radiat Biol, 1999, 75: 1473–1477

    Article  CAS  Google Scholar 

  18. Xu K, Ge W, Liang G, Wang L, Yang Z, Wang Q, Hsing I, Xu B. Bisphosphonate-containing supramolecular hydrogels for topical decorporation of uranium-contaminated wounds in mice. Int J Radiat Biol, 2008, 84: 353–362

    Article  CAS  Google Scholar 

  19. Uehara A, Kyuno E, Tsuchiya R. The chromium(III) complexes with β-aminoethylsulfonic-N,N-diacetic acid and aspartic-N,N-diacetic acid. Bull Chem Soc Jpn, 1969, 42: 2835–2840

    Article  CAS  Google Scholar 

  20. Alexandrov EV, Blatov VA, Proserpio DM. A topological method for the classification of entanglements in crystal networks. Acta Cryst A, 2012, 68: 484–493

    Article  CAS  Google Scholar 

  21. Denning RG. Electronic structure and bonding in actinyl ions and their analogs. J Phys Chem A, 2007, 111: 4125–4143

    Article  CAS  Google Scholar 

  22. Liu G, Deifel NP, Cahill CL, Zhurov VV, Pinkerton AA. Charge transfer vibronic transitions in uranyl tetrachloride compounds. J Phys Chem A, 2012, 116: 855–864

    Article  CAS  Google Scholar 

  23. Brachmann A, Geipel G, Bernhard G, Nitsche H. Study of uranyl(VI) malonate complexation by time resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim Acta, 2002, 90: 147–153

    Article  CAS  Google Scholar 

  24. White KA, Chengelis DA, Zeller M, Geib SJ, Szakos J, Petoud S, Rosi NL. Near-infrared emitting ytterbium metal-organic frameworks with tunable excitation properties. Chem Commun, 2009: 4506–4508

    Google Scholar 

  25. Knope KE, de Lill DT, Rowland CE, Cantos PM, de Bettencourt-Dias A, Cahill CL. Uranyl sensitization of samarium(III) luminescence in a two-dimensional coordination polymer. Inorg Chem, 2012, 51: 201–206

    Article  CAS  Google Scholar 

  26. Shu YB, Xu C, Liu WS. A uranyl hybrid compound designed from urea-bearing dipropionic dcid. Eur J Inorg Chem, 2013: 3592–3595

    Google Scholar 

  27. Thangavelu SG, Andrews MB, Pope SJA, Cahill CL. Synthesis, structures, and luminescent properties of uranyl terpyridine aromatic carboxylate coordination polymers. Inorg Chem, 2013, 52: 2060–2069

    Article  CAS  Google Scholar 

  28. Contreras MA, Jones KM, Gedvilas L, Matson R. Preferred orientation in polycrystalline Cu(In,Ga)Se2 and its effect on absorber thinfilms and devices. In: 16th European Photovoltaic Solar Energy Conference and Exhibition Glasgow. Scotland, U.K., 2000

    Google Scholar 

  29. Ho NC, van der Pluijm BA, Peacor DR. Static recrystallization and preferred orientation of phyllosilicates: michigamme formation, northern michigan, USA. J Struct Geol, 2001, 23: 887–893

    Article  Google Scholar 

  30. Zhang Z, Helms G, Clark SB, Tian G, Zanonato P, Rao L. Complexation of uranium(VI) by gluconate in acidic solutions: a thermodynamic study with structural analysis. Inorg Chem, 2009, 48: 3814–3824

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weisheng Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, Y., Ju, Z., Zhang, H. et al. Complexation of uranyl ions by N-(sulfoethyl)-iminodiacetic acid: Hydrothermal synthesis, luminescence, and uranyl sequestration. Sci. China Chem. 58, 845–849 (2015). https://doi.org/10.1007/s11426-014-5243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5243-3

Keywords

Navigation