Skip to main content
Log in

A theoretical study on the mechanisms of intermolecular hydroacylation of aldehyde catalyzed by neutral and cationic rhodium complexes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we used density functional theory (DFT) computations to study the mechanisms of the hydroacylation reaction of an aldehyde with an alkene catalyzed by Wilkinson’s catalyst and an organic catalyst 2-amino-3-picoline in cationic and neutral systems. An aldehyde’s hydroacylation includes three stages: the C-H activation to form rhodium hydride (stage I), the alkene insertion into the Rh-H bond to give the Rh-alkyl complex (stage II), and the C-C bond formation (stage III). Possible pathways for the hydroacylation originated from the trans and cis isomers of the catalytic cycle. In this paper, we discussed the neutral and cationic pathways. The rate-determining step is the C-H activation step in neutral system but the reductive elimination step in the cationic system. Meanwhile, the alkyl group migration-phosphine ligand coordination pathway is more favorable than the phosphine ligand coordination-alkyl group migration pathway in the C-C formation stage. Furthermore, the calculated results imply that an electron-withdrawing group may decrease the energy barrier of the C-H activation in the benzaldehyde hydroacylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kakiuchi F, Murai S. Catalytic C-H/olefin coupling. Acc Chem Res, 2002, 35: 826–834

    Article  CAS  Google Scholar 

  2. Lei M, Feng WL, Du HG, Xu ZF. Theoretical investigation on regioselectivity of aromatic ketones in the addition with olefin catalyzed by RuH2(CO)(PPh3)3. Sci China Ser B, 2000, 43: 412–420

    Article  CAS  Google Scholar 

  3. Crabtree RH. The organometallic chemistry of alkanes. Chem Rev, 1985, 85: 245–269

    Article  CAS  Google Scholar 

  4. Ritleng V, Sirlin C, Pfeffer M. Ru-, Rh-, and Pd-catalyzed C-C bond formation involving C-H activation and addition on unsaturated substrates: reactions and mechanistic aspects. Chem Rev, 2002, 102: 1731–1770

    Article  CAS  Google Scholar 

  5. Dermenci A, Dong GB. Decarbonylative C-C bond forming reactions mediated by transition metals. Sci China Chem, 2013, 56: 685–701

    Article  CAS  Google Scholar 

  6. Suggs JW. Isolation of a stable acylrhodium (III) hydride intermediate formed during aldehyde decarbonylation. Hydroacylation. J Am Chem Soc, 1978, 100: 640–641

    Article  CAS  Google Scholar 

  7. Fairlie DP, Bosnich B. Homogeneous catalysis. Mechanism of catalytic hydroacylation: the conversion of 4-pentenals to cyclopentanones. Organometallics, 1988, 7: 946–954

    Article  CAS  Google Scholar 

  8. Chung LW, Wiest O, Wu YD. A theoretical study on the trans-addition intramolecular hydroacylation of 4-alkynals catalyzed by cationic rhodium complexes. J Org Chem, 2008, 73: 2649–2655

    Article  CAS  Google Scholar 

  9. Morgan JP, Kundu K, Doyle MP. A readily prepared neutral heterobimetallic titanium (IV)-rhodium (I) catalyst for intramolecular hydroacylation. Chem Commun, 2005: 3307–3309

    Google Scholar 

  10. Hyatt IFD, Anderson HK, Morehead Jr AT, Sargent AL. Mechanism of rhodium-catalyzed intramolecular hydroacylation: a computational study. Organometallics, 2008, 27:135–147

    Article  CAS  Google Scholar 

  11. Larock R, Oertle K, Potter G. A convenient synthesis of cyclopentanones via rhodium (I)-catalyzed intramolecular hydroac-ylation of unsaturated aldehydes. J Am Chem Soc, 1980, 102: 190–197

    Article  CAS  Google Scholar 

  12. Omura S, Fukuyama T, Horiguchi J, Murakami Y, Ryu I. Ruthenium hydride-catalyzed addition of aldehydes to dienes leading to β, Γ-unsaturated ketones. J Am Chem Soc, 2008, 130: 14094–14095

    Article  CAS  Google Scholar 

  13. Marder TB, Roe DC, Milstein D. Transition-metal-catalyzed carbon-carbon bond formation via carbon-hydrogen activation. Intermolecular hydroacylation: the addition of aldehydes to alkenes. Organometallics, 1988, 7: 1451–1453

    Article  CAS  Google Scholar 

  14. Jun CH, Jo E, Park JW. Intermolecular hydroacylation by transition-metal complexes. Eur J Org Chem, 2007, 2007: 1869–1881

    Article  Google Scholar 

  15. Kokubo K, Matsumasa K, Nishinaka Y, Miura M, Nomura M. Reaction of 2-hydroxybenzaldehydes with alkynes, alkenes, or allenes via cleavage of the aldehyde C-H bond using a Rhodium catalyst system. Bull Chem Soc Jpn, 1999, 72: 303–311

    Article  CAS  Google Scholar 

  16. Stemmler RT, Bolm C. An unprecedented rhodium-catalyzed asymmetric intermolecular hydroacylation reaction with salicylaldehydes. Adv Synth Catal, 2007, 349: 1185–1198

    Article  CAS  Google Scholar 

  17. Willis MC, Randell-Sly HE, Woodward RL, McNally SJ, Currie GS. Rhodium-catalyzed intermolecular chelation controlled alkene and alkyne hydroacylation: synthetic scope of β-S-substituted aldehyde substrates. J Org Chem, 2006, 71: 5291–5297

    Article  CAS  Google Scholar 

  18. Willis MC, Randell-Sly HE, Woodward RL, Currie GS. Chelation-controlled intermolecular alkene and alkyne hydroacylation: the utility of β-thioacetal aldehydes. Org Lett, 2005, 7: 2249–2251

    Article  CAS  Google Scholar 

  19. Wojcicki A. Insertion reactions of transition metal-carbon σ-bonded compounds I: carbon monoxide insertion. Adv Organomet Chem, 1973, 11: 87–145

    CAS  Google Scholar 

  20. Suggs JW. Activation of aldehyde carbon-hydrogen bonds to oxidative addition via formation of 3-methyl-2-aminopyridyl aldimines and related compounds: rhodium based catalytic hydroacylation. J Am Chem Soc, 1979, 101: 489–489

    Article  CAS  Google Scholar 

  21. Jun CH, Lee H, Hong JB. Chelation-assisted intermolecular hydroacylation: direct synthesis of ketone from aldehyde and 1-alkene. J Org Chem, 1997, 62: 1200–1201

    Article  CAS  Google Scholar 

  22. Jun CH, Lee DY, Lee H, Hong JB. A highly active catalyst system for intermolecular hydroacylation. Angew Chem Int Ed, 2000, 39: 3070–3072

    Article  CAS  Google Scholar 

  23. Park YJ, Park JW, Jun CH. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery. Acc Chem Res, 2008, 41: 222–234

    Article  CAS  Google Scholar 

  24. Vautravers NR, Regent DD, Breit B. Inter-and intramolecular hydroacylation of alkenes employing a bifunctional catalyst system. Chem Commun, 2011, 47: 635–6637

    Google Scholar 

  25. Beletskiy EV, Sudheer C, Douglas CJ. Cooperative catalysis approach to intramolecular hydroacylation. J Org Chem, 2012, 77: 5884–5893

    Article  CAS  Google Scholar 

  26. Jun CH, Lee H, Hong JB. Chelation-assisted intermolecular hydroacylation: direct synthesis of ketone from aldehyde and 1-alkene. J Org Chem, 1997, 62: 1200–1201

    Article  CAS  Google Scholar 

  27. Jun CH, Huh CW, Na SJ. Direct synthesis of ketones from primary alcohols and 1-alkenes. Angew Chem Int Ed, 1998, 37: 145–147

    Article  CAS  Google Scholar 

  28. Jun CH. Transition metal-catalyzed carbon-carbon bond activation. Chem Soc Rev, 2004, 33: 610–618

    Article  CAS  Google Scholar 

  29. Li HX, Wang XT, Wen MW, Wang ZX. Computational insight into the mechanism of selective imine formation from alcohol and amine catalyzed by the ruthenium(II)-PNP pincer complex. Eur J Inor Chem, 2012, 2012: 5011–5020

    Article  CAS  Google Scholar 

  30. Li HX, Wang XT, Huang F, Lu G, Jiang JL, Wang ZX. Computational study on the catalytic role of pincer ruthenium(II)-PNP complex in directly synthesizing amide from alcohol and amine: the origin of selectivity of amide over ester and imine. Organometallics, 2011, 30: 5233–5247

    Article  CAS  Google Scholar 

  31. Marcé P, Godard C, Feliz M, Yáñez X, Bo C, Castillón S. Rhodium-catalyzed intermolecular hydroiminoacylation of alkenes: comparison of neutral and cationic catalytic systems. Organometallics, 2009, 28: 2976–2985

    Article  Google Scholar 

  32. Yoo K, Jun CH, Choi CH, Sim E. Density functional study on the C-H bond cleavage of aldimine by a rhodium(I) catalyst. Bull Korean Chem Soc, 2008, 29: 1920–1926

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision B.01, Wallingford CT: Gaussian, Inc., 2010

    Google Scholar 

  34. Zhao Y, Truhlar DG. Density functionals with broad applicability in chemistry. Acc Chem Res, 2008, 41: 157–167

    Article  CAS  Google Scholar 

  35. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  36. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys, 1985, 82: 299–240

    Article  CAS  Google Scholar 

  37. Sieffert N, Buhl M. Noncovalent interactions in a transition-metal triphenylphosphine complex: a density functional case study. Inorg Chem, 2009, 48: 4622–4624

    Article  CAS  Google Scholar 

  38. Kulkarni AD, Truhlar DG. Performance of density functional theory and Møller-plesset second-order perturbation theory for structural parameters in complexes of Ru. J Chem Theory Comput, 2011, 7: 2325–2332

    Article  CAS  Google Scholar 

  39. Guo XJ, Tang YH, Zhang X, Lei M. Concerted or stepwise hydrogen transfer in the transfer hydrogenation of acetophenone catalyzed by ruthenium-acetamido complex: a theoretical mechanistic investigation. J Phy Chem A, 2011, 115: 12321–12330

    Article  CAS  Google Scholar 

  40. Feng R, Xiao A, Zhang X, Tang YH, Lei M. Origins of enantioselectivity in asymmetric ketone hydrogenation catalyzed by a RuH2 (binap)(cydn) complex: insights from a computational study. Dalton Trans, 2013, 42: 2130–2145

    Article  CAS  Google Scholar 

  41. Chen Y, Tang YH, Lei M. A comparative study on the hydrogenation of ketones catalyzed by diphosphine-diamine transition metal complexes using DFT method. Dalton Trans, 2009: 2359–2364

    Google Scholar 

  42. Hassan M, Zhang X, Zhang WC, Guo XJ, Chen BH, Lei M. How does methanol assist the hydrogen transfer in Pd-catalyzed cyclocarbonylation of allylic alcohols? Insights from a DFT study. Chem Lett, 2012, 41: 693–695

    Article  CAS  Google Scholar 

  43. Cioslowski J. A new population analysis based on atomic polar tensors. J Am Chem Soc, 1989, 111: 8333–8336

    Article  CAS  Google Scholar 

  44. Barone V, Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A, 1998, 102: 1995–2001

    Article  CAS  Google Scholar 

  45. Strajbl M, Sham YY, Villa J, Chu ZT, Warshel A. Calculations of activation entropies of chemical reactions in solution. J Phys Chem B, 2000, 104: 4578–4584

    Article  CAS  Google Scholar 

  46. Hermans J, Wang L. Inclusion of loss of translational and rotational freedom in theoretical estimates of free energies of binding. Application to a complex of benzene and mutant T4 lysozyme. J Am Chem Soc, 1997, 119: 2707–2714

    Article  CAS  Google Scholar 

  47. Yu ZX, Houk K. Intramolecular 1,3-dipolar ene reactions of nitrile oxides occur by stepwise 1,1-cycloaddition/retro-ene mechanisms. J Am Chem Soc, 2003, 125: 13825–13830

    Article  CAS  Google Scholar 

  48. Liang Y, Liu S, Xia Y. Z, Li YH, Yu ZX. Mechanism, regioselectivity, and the kinetics of phosphine-catalyzed [3+2] cycloaddition reactions of allenoates and electron-deficient alkenes. Chem Eur J, 2008, 14: 4361–4373

    Article  CAS  Google Scholar 

  49. Tang SY, Gong TJ, Fu Y. Mechanistic study of copper-catalyzed intramolecular ortho-C-H activation/carbon-nitrogen and carbon-oxygen cyclizations. Sci China Chem, 2013, 56: 619–632

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhang or Ming Lei.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Zhang, X., Chen, Z. et al. A theoretical study on the mechanisms of intermolecular hydroacylation of aldehyde catalyzed by neutral and cationic rhodium complexes. Sci. China Chem. 57, 1264–1275 (2014). https://doi.org/10.1007/s11426-014-5102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5102-2

Keywords

Navigation