Skip to main content
Log in

Computational Investigation of Substituent Effect on the Thermodynamics and Kinetics of β-Hydrocarbyl Elimination from a Rhodium(I) Iminyl Complex

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

This study investigates the effect of different substituents on the β-hydrocarbyl elimination reaction of the Rh(I) iminyl complexes (H3P)3Rh[N=CAr2]; Ar = para-C6H4X (X = NH2, OMe, Me, H, F, COOH, CHO, CN) and formation of (H3P)3Rh–Ar complexes and para-C6H4X(CN) molecules using MPW1PW91-based quantum mechanical calculations. There are correlations between Hammett constants for the para-substituted (σp) functional groups of electron withdrawing (EDGs) and donating (EDGs) groups with the relative energies, thermodynamic parameters and the rate constant of this reaction. Also, the calculated Wiberg indices of the Rh-C bond values are used to illustrate the Rh–N bond cleavage and Rh–C bond formation. The rate constants of the β-hydrocarbyl eliminations are computed from 300 to 1200 K, in gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. F. Hartwig, Organotransition Metal Chemistry: From Bonding to Catalysis (Univ. Science Books, Sausalito, CA, 2009).

    Google Scholar 

  2. R. H. Crabtree, The Organometallic Chemistry of the Transition Metals, 3rd ed. (Wiley, New York, 2001).

    Google Scholar 

  3. C. Elschenbroich, Organometallics, 3rd ed. (Wiley-VCH, Weinheim, Germany, 2006).

    Google Scholar 

  4. J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed. (Harper Collins College, New York, 1993).

  5. J. P. H. Collman, J. R. Norton, and R. G. Finke, Principles and Applications of Organometallic Chemistry (Univ. Science Books, Mill Valley, CA, 1987).

    Google Scholar 

  6. Y. Gloaguen, L. M. Jongens, J. N. H. Reek, M. Lutz, B. d. Bruin, and J. I. V. D. Vlugt, Organometallics 32, 4284 (2013).

    Article  CAS  Google Scholar 

  7. M. A. Esteruelas, C. Larramona, and E. Oñate, Organometallics 32, 2567 (2013).

    Article  CAS  Google Scholar 

  8. S. M. Bellows, T. R. Cundari, and P. L. Holland, Organometallics 32, 4741 (2013).

    Article  CAS  Google Scholar 

  9. D. Inoki, T. Matsumoto, H. Nakai, and S. Ogo, Organometallics 31, 2996 (2012).

    Article  CAS  Google Scholar 

  10. P. L. Theofanis and W. A. Goddard, Organometallics 30, 4941 (2011).

    Article  CAS  Google Scholar 

  11. M. Brookhart, M. L. H. Green, and G. Parkin, Proc. Natl. Acad. Sci. U. S. A. 104, 6908 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. N. Koga, S. Obara, K. Kitaura, and K. Morokuma, J. Am. Chem. Soc. 107, 7109 (1985).

    Article  CAS  Google Scholar 

  13. S.-Y. Tang, J. Zhang, and Y. Fu, Comput. Theor. Chem. 1007, 31 (2013).

    Article  CAS  Google Scholar 

  14. C. Ryan, A. K. d. K. Lewis, S. Caddick, and N. Kaltsoyannis, Theor. Chem. Acc. 129, 303 (2011).

    Article  CAS  Google Scholar 

  15. T. Debnath, T. Ash, T. Banu, and A. K. Das, Theor. Chem. Acc. 135, 175 (2016).

    Article  CAS  Google Scholar 

  16. S. S. Rozenel, L. Perrin, O. Eisenstein, and R. A. Andersen, Organometallics 36, 97 (2017).

    Article  CAS  Google Scholar 

  17. F. Rekhroukh, L. Estevez, S. Mallet-Ladeira, K. Miqueu, A. Amgoune, and D. Bourissou, J. Am. Chem. Soc. 138, 11920 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. K. C. Lam, Z. Lin, and T. B. Marder, Organometallics 26, 3149 (2007).

    Article  CAS  Google Scholar 

  19. M. C. e. Reis, C. S. Lopez, E. Kraka, D. Cremer, and O. N. Faza, Inorg. Chem. 55, 8636 (2016).

    Article  CAS  Google Scholar 

  20. B. Pudasaini and B. G. Janesko, Organometallics 31, 4610 (2012).

    Article  CAS  Google Scholar 

  21. T. R. Cundari and C. D. Taylor, Organometallics 22, 4047 (2003).

    Article  CAS  Google Scholar 

  22. P. L. Theofanis and W. A. Goddard, Organometallics 30, 4941

  23. R. Uematsu, C. Saka, Y. Sumiya, T. Ichino, T. Taketsugu, and S. Maeda, Chem. Comm. 53, 7302 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. D. P. Curran and T. R. McFadden, J. Am. Chem. Soc. 138, 7741 (2017).

    Article  CAS  Google Scholar 

  25. S. Ghorbaninezhad and R. Ghiasi, Chem. Methodol., 80 (2020).

  26. M. Wesolowski and T. Konarski, J. Therm. Anal. Calororim. 55 (1999).

  27. F. Jia, L.-P. Yang, D.-H. Li, and W. Jiang, J. Org. Chem. 82, 10444 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, 3rd ed. (Harper Collins, New York, 1987).

    Google Scholar 

  29. S. Berson, S. Cecioni, M. Billon, Y. Kervella, R. Bettignies, S. Bailly, and S. Guillerez, Sol. Energy Mater. Sol. Cells 94, 699 (2010).

    Article  CAS  Google Scholar 

  30. M. A. Solomos, T. A. Watts, and J. A. Swift, Cryst. Growth Des. 17, 5065 (2017).

    Article  CAS  Google Scholar 

  31. J. Ohshita, K. Hiroyuki, A. Takata, I. Toshiyuki, A. Kunai, N. Nhta, K. Komaguchi, M. Shiotani, A. Adachi, K. Sakamaki, and K. Okita, Organometallics 20, 4800 (2001).

    Article  CAS  Google Scholar 

  32. S. Abou-Hatab, V. A. Spata, and S. Matsika, J. Phys. Chem. A 121, 1213 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. J. Jung, J. Jo, and A. Dinescu, Org. Process Res. Dev. 21, 1689 (2017).

    Article  CAS  Google Scholar 

  34. C.-T. Cao, L.-Y. Wang, and C.-Z. Cao, Chin. J. Chem. Phys. 31, 45 (2018).

    Article  CAS  Google Scholar 

  35. C. R. Caiser, E. A. Basso, and R. Rittner, Magn. Reson. Chem. 39, 643 (2001).

    Article  Google Scholar 

  36. K. A. Manbeck, N. C. Boaz, N. C. Bair, A. M. S. Sanders, and A. L. Marsh, J. Chem. Educ. 88, 1444 (2011).

    Article  CAS  Google Scholar 

  37. A. Stockmann, J. Kurzawa, N. Fritz, N. Acar, S. Schneider, J. Daub, R. Engl, and T. Clark, J. Phys. Chem. A 106, 7958 (2002).

    Article  CAS  Google Scholar 

  38. M. Ottonelli, M. Piccardo, D. Duce, S. Thea, and G. Dellepiane, J. Phys. Chem. A 116, 611 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Y.-H. Cheng, Y. Fang, X. Zhao, L. Liu, and Q.-X. Guo, Bull. Chem. Soc. Jpn. 75, 1715 (2002).

    Article  CAS  Google Scholar 

  40. F. Pichierri, Theor. Chem. Acc. 136, 114 (2017).

    Article  CAS  Google Scholar 

  41. G. S. Remya and C. H. Suresh, Phys. Chem. Chem. Phys. 18, 20615 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. H. Szatylowicz, A. Jezuita, T. Siodla, K. S. Varaksin, M. A. Domanski, K. Ejsmont, and T. M. Krygowski, ACS Omega 2, 7163 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. G. G. Shalmani, R. Ghiasi, and A. Marjani, Chem. Methodol. 3, 752 (2019).

    Article  CAS  Google Scholar 

  44. R. Ghiasi and A. Zamani, J. Chin. Chem. Soc. 64, 1340 (2017).

    Article  CAS  Google Scholar 

  45. R. Ghiasi, S. Abdolmohammadi, and S. Moslemizadeh, J. Chin. Chem. Soc. 62, 898 (2015).

    Article  CAS  Google Scholar 

  46. A. N. Egorochkin, O. V. Kuznetsova, N. M. Khamaletdinova, and L. G. Domratcheva-Lvova, Inorg. Chim. Acta 471, 148 (2018).

    Article  CAS  Google Scholar 

  47. H. Anane, S. E. Houssame, A. E. Guerraze, A. Guermoune, A. Boutalib, A. Jarid, I. Nebot-Gil, and F. Tomás, Cent. Eur. J. Chem. 6, 400 (2008).

    CAS  Google Scholar 

  48. D. M. Denning and D. E. Falvey, J. Org. Chem. 82, 1552 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. A. Zamani, R. Ghiasi, M. S. Sadjadi, and M. Yousefi, Russ. J. Phys. Chem. A 93, 880 (2019).

    Article  Google Scholar 

  50. M. Nasrollahi, R. Ghiasi, and F. Shafiee, J. Chin. Chem. Soc. 66, 1577 (2019).

  51. R. Ghiasi, A. Zamani, and M. K. Shamami, Russ. J. Phys. Chem. A 93, 1537 (2019).

  52. S. Fereidoni, R. Ghiasi, H. Pasdar, and B. Mohtat, J. Struct. Chem. 60, 1743 (2019).

    Article  CAS  Google Scholar 

  53. L. P. Hammett, J. Am. Chem. Soc. 59, 96 (1937).

    Article  CAS  Google Scholar 

  54. P. Zhao and J. F. Hartwig, Organometallics 27, 4749 (2008).

    Article  CAS  Google Scholar 

  55. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009).

    Google Scholar 

  56. P. J. Hay, J. Chem. Phys. 66, 4377 (1977).

    Article  CAS  Google Scholar 

  57. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).

    Article  CAS  Google Scholar 

  58. A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980).

    Article  CAS  Google Scholar 

  59. A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970).

    Article  CAS  Google Scholar 

  60. D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010).

    Article  PubMed  CAS  Google Scholar 

  61. D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss, Theor. Chim. Acta 77, 123 (1990).

    Article  CAS  Google Scholar 

  62. C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).

    Article  CAS  Google Scholar 

  63. R. C. Dunbar, J. Phys. Chem. A 106, 7328 (2002).

    Article  CAS  Google Scholar 

  64. M. Porembski and J. C. Weisshaar, J. Phys. Chem. A 105, 6655 (2001).

    Article  CAS  Google Scholar 

  65. M. Porembski and J. C. Weisshaar, J. Phys. Chem. A 105, 4851 (2001).

    Article  CAS  Google Scholar 

  66. Y. Zhang, Z. Guo, and X.-Z. You, J. Am. Chem. Soc. 123, 9378 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. K. Fukui, Acc. Chem. Res. 14, 363 (1981).

    Article  CAS  Google Scholar 

  68. K. Fukui, J. Phys. Chem. 74, 4161 (1970).

    Article  CAS  Google Scholar 

  69. C. Gonzalez and H. B. Schlegel, J. Phys. Chem. 94, 5523 (1990).

    Article  CAS  Google Scholar 

  70. C. Gonzalez and H. B. Schlegel, J. Chem. Phys. 90, 2154 (1989).

    Article  CAS  Google Scholar 

  71. N. M. O’Boyle, A. L. Tenderholt, and K. M. Langer, J. Comput. Chem. 29, 839 (2008).

    Article  PubMed  CAS  Google Scholar 

  72. A. Miyoshi, GPOP software, rev. 2013.07.15m10 (Univ. of Tokyo, Tokyo, 2010). http://akrmys.com/gpop/.

  73. K. A. Conors, Chemical Kinetics—The Study of Reaction Rate in Solution (Wiley, New York, 1990).

    Google Scholar 

  74. M. Manoharan and P. Venuvanalingam, J. Mol. Struct.: THEOCHEM 394, 41 (1997).

    Article  CAS  Google Scholar 

  75. M. Manoharan and P. Venuvanalingam, J. Chem. Soc., Perkin Trans., 1799 (1997).

  76. K. B. Wiberg, Tetrahedron 24, 1083 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghiasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saideh Ghorbaninezhad, Ghiasi, R. & Marjani, A. Computational Investigation of Substituent Effect on the Thermodynamics and Kinetics of β-Hydrocarbyl Elimination from a Rhodium(I) Iminyl Complex. Russ. J. Phys. Chem. 95, 163–171 (2021). https://doi.org/10.1134/S0036024421010076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421010076

Keywords:

Navigation