Skip to main content
Log in

FeCl3·6H2O-catalyzed selective reduction of allylic halides to alkenes with concomitant oxidation of benzylic alcohols to aldehydes

  • Articles
  • Special Issue · The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Iron-catalyzed direct reduction of allylic halides with benzylic alcohol was achieved, providing a new, simple, and efficient method for conducting highly regioselective hydrodehalogenation. This method not only features a readily available reductant, an inexpensive catalyst, simple manipulation, and good tolerance of functional groups including nitriles, nitro, esters, and methoxyl groups, it also has mild reaction conditions and shows complete regioselectivity in that only halides sited at the allylic position are reduced. Alternatively, this method can be applied in the selective transformation of benzylic alcohols to aromatic aldehydes without overoxidation to carboxylic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pinder AR. The hydrogenolysis of organic halides. Synthesis-stuttgart, 1980, (6):425–452

    Google Scholar 

  2. Hudlicky M. Comprehensive Organic Synthesis. In Trost BM, Fleming I. Eds. Pergamon: Oxford, 1991, 8:895

  3. Parry RJ, Li Y, Gomez EE. Biosynthesis of the antitumor antibiotic sparsomycin. J Am Chem Soc, 1992, 114(15):5946–5959

    Article  CAS  Google Scholar 

  4. Dorman G, Otszenski JD, Prestwich GD. Synthesis of highly tritiated 4-benzoyl-L-phenylalanine, a photoactivatable amino acid. J Org Chem, 1995, 60(7):2292–2297

    Article  CAS  Google Scholar 

  5. Trestiege I, Maleczka Jr RE. A new approach for the generation and reaction of organotin hydrides: The development of reactions catalytic in tin. J Org Chem, 1999, 64(2):342–343

    Article  Google Scholar 

  6. Davies CJE, Page MJ, Ellul CE, Mahon MF, Whittlesey MK. Ni(I) and Ni(II) ring-expanded N-heterocyclic carbene complexes: C-H activation, indole elimination and catalytic hydrodehalogenation. Chem Commun, 2010, (46):5151–5153

    Google Scholar 

  7. Hitchman ML, Spackman RA, Ross NC, Agra C. Disposal methods for chlorinated aromatic waste. Chem Soc Rev, 1995, (24):423–430

    Google Scholar 

  8. Hites RA. Environmental behavior of chlorinated dioxins and furans. Acc Chem Res, 1990, 23(6):194–201

    Article  CAS  Google Scholar 

  9. Arai H, Ashizawa T, Gomi K, Kono M, Saito H, Kasai M. Synthesis and antitumor-activity of various 6-demethylmitomycins and 6-demethyl-6-halomitomycins. J Med Chem, 1995, 38(16):3025–3033

    Article  CAS  Google Scholar 

  10. Anizon F, Moreau P, Sancelme M, Voldoire A, Prudhomme M, Ollier M, Severe D, Riou JF, Bailly C, Fabbro D, Meyer T, Aubertin AM. Syntheses, biochemical and biological evaluation of staurosporine analogues from the microbial metabolite rebeccamycin. Bioorg Med Chem, 1998, 6(9):1597–1603

    Article  CAS  Google Scholar 

  11. Marminon C, Facompre M, Bailly C, Hickman J, Pierre A, Pfeiffer B, Renard P, Prudhomme P. Dimers from dechlorinated rebeccamycin: Synthesis, interaction with DNA, and antiproliferative activities. Eur J Med Chem, 2002, 37(5):435–440

    Article  CAS  Google Scholar 

  12. Liégault B, Petrov I, Gorelsky SI, Fagnou K. Modulating reactivity and diverting selectivity in palladium-catalyzed heteroaromatic direct arylation through the use of a chloride activating/blocking group. J Org Chem, 2010, 75(4):1047–1060

    Article  Google Scholar 

  13. Masuda N, Tanba S, Mori A. Stepwise construction of head-to-tail-type oligothiophenes via iterative palladium-catalyzed CH arylation and halogen exchange. Org Lett, 2009, 11(11):2297–2300

    Article  CAS  Google Scholar 

  14. Zhao D, Wang W, Yang F, Lan J, Yang L, Gao G, You J. Copper-catalyzed direct C arylation of heterocycles with aryl bromides: Discovery of fluorescent core frameworks. Angew Chem Int Ed, 2009, 48(27):3296–3300

    Article  CAS  Google Scholar 

  15. Frimmel J, Zdrazil M. Hydrogenlysis of organochloorinated pollutantsparallel hydrodesulfurization of methylrthiophene and hydrodechlorination of dichlorobenzene over carbon-supported nickel, molybdenum and nickel-molybdenum sulfide catalysis. J Chem Technol Biotechnol, 1995, 63(1):17–24

    Article  CAS  Google Scholar 

  16. He J, Ritalahti KM, Yang KL, Koenigsberg SS, Löffler FE. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature, 2003, 424(6944):62–65

    Article  CAS  Google Scholar 

  17. Logan ME, Oinen ME. Dechlorination of aryl chlorides with sodium formate using a homogeneous palladium catalyst. Organometallics, 2006, 25(4):1052–1054

    Article  CAS  Google Scholar 

  18. Urbano FJ, Marinas JM, Hydrogenolysis of organohalogen compounds over palladium supported catalysts. J Mol Catal A, 2001, 173(1–2):329–345

    Article  CAS  Google Scholar 

  19. Selva M, Tundo P, Perosa A. Hydrodehalogenation of halogenated aryl ketones under multiphase conditions. 5. Chemoselectivity toward aryl alcohols over a Pt/C catalyst. J Org Chem, 1998, 63(10):3266–3271

    Article  CAS  Google Scholar 

  20. Viciu MS, Grasa GA, Nolan SP. Catalytic dehalogenation of aryl halides mediated by a palladium/imidazolium salt system. Organometallics, 2001, 20(16):3607–3612

    Article  CAS  Google Scholar 

  21. Zawisza AM, Muzart J. Pdcatalyzed reduction of aryl halides using dimethylformamide as the hydride source. Tetrahedron Lett, 2007, 48(38):6738–6742

    Article  CAS  Google Scholar 

  22. Moon J, Lee S. Palladium catalyzed-dehalogenation of aryl chlorides and bromides using phosphite ligands. J Organomet Chem, 2009, 694(3):473–477

    Article  CAS  Google Scholar 

  23. Alonso F, Beletskaya IP, Yus M. Metal-mediated reductive hydrodehalogenation of organic halides. Chem Rev, 2002, 102(11):4009–4092

    Article  CAS  Google Scholar 

  24. Hara T, Kaneta T, Mori K, Mitsudome T, Mizugaki T, Ebitanic K, Kaneda, K. Magnetically recoverable heterogeneous catalyst: Palladium nanocluster supported on hydroxyapatite-encapsulated gamma-Fe2O3 nanocrystallites for highly efficient dehalogenation with molecular hydrogen. Green Chem, 2007, 9(11):1246–1251

    Article  CAS  Google Scholar 

  25. Esteruelas, MA, Herrero J, Olivàn M. Dehalogenation of hexachlorocyclohexanes and simultaneous chlorination of triethylsilane catalyzed by rhodium and ruthenium complexes. Organometallics, 2004, 23(16):3891–3897

    Article  CAS  Google Scholar 

  26. Peterson AA, McNeill K. Catalytic dehalogenation of sp2 C-F and C-Cl bonds in fluoro- and chloroalkenes. Organometallics, 2006, 25(21):4938–4930

    Article  CAS  Google Scholar 

  27. Wang JL, Zhu ZY, Huang W, Deng ML, Zhou XG. Air-initiated hydrosilylation of unactivated alkynes and alkenes and dehalogenation of halohydrocarbons by tris(trimethylsilyl)silane under solvent-free conditions. J Organomet Chem, 2008, 693(12):2188–2192

    Article  CAS  Google Scholar 

  28. Fakhfakh MA, Franck X, Hocquemiller R, Figadère B. Iron catalyzed hydrodebromination of 2-aryl-1,1-dibromo-1-alkenes. J Organomet Chem, 2001, 624(1–2):131–135

    Article  CAS  Google Scholar 

  29. Czaplik WM, Grupe S, Mayer M, von Wangelin AJ. Practical iron-catalyzed dehalogenation of aryl halides. Chem. Commun, 2010, (46):6350–6352

    Google Scholar 

  30. Moglie Y, Alonso F, Vitale C, Yusb M, Radivoy G. Active-iron-promoted hydrodehalogenation of organic halides. Appl Cat A: Gen 2006, 313(1):94–100

    Article  CAS  Google Scholar 

  31. Baxter RM. Reductive dechlorination of certain chlorinated organic-compounds by reduced hematin compared with their behavior in the environment. Chemosphere, 1990, 21(4–5):451–458

    Article  CAS  Google Scholar 

  32. Krone UE, Thauer RK, Hogenkamp HPC, Steinbach K. Reductive formation of carbon-monoxide from CCl4 and freon-11, freon-12, and freon-13 catalyzed by corrinoids. Biochemistry, 1991, 30(10):2713–2719

    Article  CAS  Google Scholar 

  33. Maldotti A, Amadelli R, Bartocci C, Carassiti V, Polo E, Varani G. Photochemistry of iron-porphyrin complexes. Biomimetics and catalysis. Coord Chem Rev, 1993, 125(1–2):143–154

    Article  CAS  Google Scholar 

  34. Gantzer CJ, Wackett LP. Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ Sci Technol, 1991, 25(4):715–722

    Article  CAS  Google Scholar 

  35. Fu NY, Zhao XM, Yuan YF, Wang JT. Reductive deoxygenation of carbonyl to methylene by LiAlH4/InBr3. Chinese Chem Lett, 2003, 14(10):1018–1020

    CAS  Google Scholar 

  36. Enholm EJ, Schulte II JP. Convenient catalytic free radical reductions of alkyl halides using an organotin reagent on non-cross-linked polystyrene support. Org Lett, 1999, 1(8):1275–1277

    Article  CAS  Google Scholar 

  37. Cellier PP, Spindler JF, Taillefer M, Cristau HJ. Pd/C-catalyzed room-temperature hydrodehalogenation of aryl halides with hydrazine hydrochloride. Tetrahedron Lett, 2003, 44(38):7191–7195

    Article  CAS  Google Scholar 

  38. Pham PD, Legoupy S. Organotin reagents supported on ionic liquid: Highly efficient catalytic free radical reduction of alkyl halides. Tetrahedron Lett, 2009, 50(27):3780–3782

    Article  CAS  Google Scholar 

  39. Hales NJ, Heaney H, Hollinshead JH, Lai SMF, Singh P. The dechlorination of some highly chlorinated naphthalene derivatives. Tetrahedron, 1995, 51(28):7777–7790

    Article  CAS  Google Scholar 

  40. Chelucci G, Baldino S, Pinna GA, Pinna G. Synthetic methods for the hydrodehalogenation of halogenated heterocycles. Curr Org Chem, 2012, 16(24):2921–2945

    Article  CAS  Google Scholar 

  41. Wiener H, Blum J, Sasson Y. Transfer hydrogenolysis of aryl halides and other hydrogen acceptors by formate salts in the presence of palladium/ carbon catalyst. J Org Chem, 1991, 56(21):6145–6148

    Article  CAS  Google Scholar 

  42. Aslam NA, Rajkumar V, Reddy C, Yasuda M, Baba A, Babu SA. Indium-mediated addition of gamma-substituted allylic halides to N-Aryl alpha-imino esters: Diastereoselective production of beta, beta′-dsubstituted alpha-amino acid derivatives with two contiguous stereocenters. Eur J Org Chem, (23):4395–4411

  43. Frye EC, O’Connor CJ, Twigg DG, Elbert B, Laraia L, Hulcoop DG, Venkitaraman AR, Spring DR. Palladium-catalysed cross-coupling of vinyldisiloxanes with benzylic and allylic halides and sulfonates. Chem Eur J, 2012, 18(28):8774–8779

    Article  CAS  Google Scholar 

  44. Huang W, Wang JL, Shen QS, Zhou XG. An efficient Yb(OTf)3 catalyzed alkylation of 1,3-dicarbonyl compounds using alcohols as substrates. Tetrahedron Lett, 2007, 48(23):3969–3973

    Article  CAS  Google Scholar 

  45. Huang W, Wang JL, Shen QS, Zhou XG. Yb(OTf)3-catalyzed propargylation and allenylation of 1,3-dicarbonyl derivatives with propargylic alcohols: One-pot synthesis of multi-substituted furocoumarin. Tetrahedron, 2007, 63(47):11636–11643

    Article  CAS  Google Scholar 

  46. Huang W, Shen QS, Wang JL, Zhou XG. One-step synthesis of substituted dihydro- and tetrahydroisoquinolines by FeCl3·6H2O catalyzed intramolecular Friedelrafts reaction of benzylamino-substituted propargylic alcohols. J Org Chem, 2008, 73(4):1586–1589

    Article  CAS  Google Scholar 

  47. Huang W, Zheng PZ, Zhang ZX, Liu RT, Chen ZX, Zhou XG. Controllable one-step synthesis of spirocycles, polycycles, and di- and tetrahydronaphthalenes from arylubstituted propargylic alcohols. J Org Chem, 2008, 73(17):6845–848

    Article  CAS  Google Scholar 

  48. Wang JL, Huang W, Zhang ZX, Xiang X, Liu RT, Zhou XG. FeCl3·6H2O catalyzed disproportionation of allylic alcohols and selective allylic reduction of allylic alcohols and their derivatives with benzyl alcohol. J Org Chem, 2009, 74(9):3299–3304

    Article  CAS  Google Scholar 

  49. Fried J, Florey K, Sabo EF, Herz JE, Restivo AR, Borman A, Singer FM. The reaction of thionyl chloride with allylic alcohols. J Am Chem Soc, 1955, 77(15):4182–4183

    Article  Google Scholar 

  50. Young WG, Caserio Jr FF, Brandon Jr DD. Allylic rearrangements. XLIX. The controlled conversion of α- and γ-methylallyl alcohols to chlorides with thionyl chloride. J Am Chem Soc, 1960, 82(23):6163–6168

    Article  CAS  Google Scholar 

  51. Yadav VK, Babu KG. Acetyl chloride-ethanol brings about a remarkably efficient conversion of allyl acetates into allyl chlorides. Tetrahedron, 2003, 59(46):9111–9116

    Article  CAS  Google Scholar 

  52. Obafemi CA, Lee CC. Lithium aluminium hydride reduction of some triarylvinyl bromides and acetates catalyzed by some transition metal chlorides. Can J Chem, 1990, 68(11):1998–2000

    Article  CAS  Google Scholar 

  53. Amer W, Abdelouahdi K, Ramananarivo HR, Zahouily M, Essassi E, Fihri A, Solhy A. Oxidation of benzylic alcohols into aldehydes under solvent-free microwave irradiation using new catalyst-support system. Curr Org Chem, 2013, 17(1):72–78

    Article  CAS  Google Scholar 

  54. Gazi S, Ananthakrishnan R, Bromodimethylsulfonium bromide as a potential candidate for photocatalytic selective oxidation of benzylic alcohols using oxygen and visible light. RSC Adv, 2012, 2(20):7781–7787

    Article  CAS  Google Scholar 

  55. Lim M, Oh S, Rhee H. Pd/C catalyzed oxidation of secondary benzylic alcohols using chlorobenzene under an inert condition. Bull Korean Chem Soc, 2011, 32(8):3179–3182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiGeng Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Liu, R. & Zhou, X. FeCl3·6H2O-catalyzed selective reduction of allylic halides to alkenes with concomitant oxidation of benzylic alcohols to aldehydes. Sci. China Chem. 57, 282–288 (2014). https://doi.org/10.1007/s11426-013-5042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5042-2

Keywords

Navigation