Skip to main content
Log in

Morphology control and shape evolution in 3D hierarchical superstructures

  • Reviews
  • Special Topic Growth Mechanism of Nanostructures
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hierarchical structures, in which structure is generated and controlled simultaneously at different size scales, have attracted increasing attention due to their potentials in both theoretical research and practical applications. In this review, a “non-classical crystallization” mechanism is discussed for their possibilities in morphology control of hierarchically-structured materials. Differently, this crystallization route is not based on the attaching and detaching of monomers as happened in the classical case, but through the self-organization of preformed building blocks as nanosized subunits, whose oriented attachment leads to mesocrystals with favorable morphology and texture. Representative materials including both inorganic and organic crystals are reported with possible mechanisms proposed. Synthetic protocols based on this mechanism provide unique inspirations for materials design and could be applied to morphological and structural control of new materials with optimized functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell AT. The impact of nanoscience on heterogeneous catalysis. Science, 2003, 299(5613): 1688–1691

    Article  CAS  Google Scholar 

  2. Lehn JM. Toward self-organization and complex matter. Science, 2002, 295(5564): 2400–2403

    Article  CAS  Google Scholar 

  3. Lieber CM. Nanoscale science and technology: Building a big future from small things. MRS Bull, 2003, 28(7): 486–491

    Article  CAS  Google Scholar 

  4. Wang X, Peng Q, Li YD. Interface-mediated growth of monodispersed nanostructures. Acc Chem Res, 2007, 40(8): 635–643

    Article  CAS  Google Scholar 

  5. Wu XL, Jiang LY, Cao FF, Guo YG, Wan LJ. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energy-storage devices. Adv Mater, 2009, 21(25–26): 2710–2714

    Article  CAS  Google Scholar 

  6. Shipway AN, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem, 2000, 1(1): 18–52

    Article  CAS  Google Scholar 

  7. Ahmadi TS, Wang ZL, Green TC, Henglein A, ElSayed MA. Shape-controlled synthesis of colloidal platinum nanoparticles. Science, 1996, 272(5270): 1924–1926

    Article  CAS  Google Scholar 

  8. Guo YG, Hu JS, Wan LJ. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater, 2008. 20(15): 2878–2887

    Article  CAS  Google Scholar 

  9. Hu JS, Ren LL, Guo YG, Liang HP, Cao AM, Wan LJ, Bai CL. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angew Chem Int Ed, 2005, 44(8): 1269–1273

    Article  CAS  Google Scholar 

  10. Ding W, Gu J, Zhang YW, Sun LD, Yan CH. Research progress on rare earth nanocrystals: From solution chemistry to crystal growth. Sci China Tech Sci, 2012, 42(1): 1–12

    CAS  Google Scholar 

  11. Guo W, Jiang L. Advanced energy transfer systems based on biomimic nanochannels. Sci China Chem, 2011, 41(8): 1257–1270

    Google Scholar 

  12. Song XC, Zhao Y, Zhen YF, Yang E, Liu ZS. Synthesis of cobalt hydroxide with three dimentional hierarchical structures. Sci China Chem, 2010, 53(4): 841–845

    Article  CAS  Google Scholar 

  13. Meldrum FC, Colfen H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem Rev, 2008, 108(11): 4332–4432

    Article  CAS  Google Scholar 

  14. Imai H. Self-organized Formation of Hierarchical Structures Biomineralization. Naka IK, Ed. Springer Berlin/Heidelberg, 2007. 43–72

  15. Yao HB, Fang HY, Wang YH, Yu SH. Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. Chem Soc Rev, 2011, 40(7): 3764–3785

    Article  CAS  Google Scholar 

  16. Cölfen H, Antonietti M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed, 2005, 44(35): 5576–5591

    Article  Google Scholar 

  17. Wang T, Cölfen H, Antonietti M. Nonclassical crystallization: Mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive. J Am Chem Soc, 2005, 127(10): 3246–3247

    Article  CAS  Google Scholar 

  18. Yu SH, Cölfen H, Antonietti M. Polymer-controlled morphosynthesis and mineralization of metal carbonate superstructures. J Phys Chem B, 2003, 107(30): 7396–7405

    Article  CAS  Google Scholar 

  19. Sommerdijk N, Gijsbertus D. Biomimetic CaCO3 mineralization using designer molecules and interfaces. Chem Rev, 2008, 108(11): 4499–4550

    Article  CAS  Google Scholar 

  20. LaMer VK, Dinegar RH. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc, 1950, 72(11): 4847–4854

    Article  CAS  Google Scholar 

  21. Hong Y, Ma TY, Liu L, Yuang ZY. Morphology control and their growth mechanism of inorganic nanocrystals. Sci China Ser B Chem, 2009, 39(9): 864–886

    Google Scholar 

  22. Wulff G. On the question of speed of growth and dissolution of crystal surfaces. Z Krystallogr Minera, 1901, 34(5/6): 449–530

    CAS  Google Scholar 

  23. Heather G, Yu FJ, Zhou WZ. Early stages of non-classic crystal growth. Sci China Chem, 2011, 54(12): 1867–1876

    Article  Google Scholar 

  24. Cao AM, Hu JS, Liang HP, Song WG, Wang LJ, He XL, Gao XG, Xia SH. Hierarchically structured cobalt oxide (CO3O4): The morphology control and its potential in sensors. J Phys Chem B, 2006, 110(32): 15858–15863

    Article  CAS  Google Scholar 

  25. Cao AM, Hu JS, Liang HP, Wang LJ. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew Chem Int Ed, 2005, 44(28): 4391–4395

    Article  CAS  Google Scholar 

  26. Hu JS, Guo YG, Liang HP, Wang LJ, Jiang L. Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. J Am Chem Soc, 2005, 127(48): 17090–17095

    Article  CAS  Google Scholar 

  27. Li WY, Xu LN, Chen J. CO3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv Func Mat, 2005, 15(5): 851–857

    Article  CAS  Google Scholar 

  28. Jana NR, Chen YF, Peng XG. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater, 2004, 16(20): 3931–3935

    Article  CAS  Google Scholar 

  29. Wang YL, Jiang XC, Xia YN. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc, 2003, 125(52): 16176–16177

    Article  CAS  Google Scholar 

  30. Jiang XC, Wang YL, Herricks T, Xia YN. Ethylene glycol-mediated synthesis of metal oxide nanowires. J Mater Chem, 2004, 14(4): 695–703

    Article  CAS  Google Scholar 

  31. Liu Z, Wen XD, Wu XL, Gao YJ, Chen HT, Zhu J, Chu PK. Intrinsic dipole-field-driven mesoscale crystallization of core-shell ZnO mesocrystal microspheres. J Am Chem Soc, 2009, 131(26): 9405–9412

    Article  CAS  Google Scholar 

  32. Fick A. Ueber diffusion. Ann Phys-Leipzig, 1855, 170(1): 59–86

    Article  Google Scholar 

  33. Chu HB, Li XM, Chen GD, Jin Z, Zhang Y, Li Y. Inorganic hierarchical nanostructures induced by concentration difference and gradient. Nano Res, 2008, 1(3): 213–220

    Article  CAS  Google Scholar 

  34. Yu JG, Guo HT, Davis SA, Mann S. Fabrication of hollow inorganic microspheres by chemically induced self-transformation. Adv Func Mater, 2006, 16(15): 2035–2041

    Article  CAS  Google Scholar 

  35. Zheng SF, Hu JS, Zhong LS, Song WG, Wang LJ, Guo YG. Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries. Chem Mater, 2008, 20(11): 3617–3622

    Article  CAS  Google Scholar 

  36. Jiang LY, Wu XL, Guo YG, Wang LJ. SnO2-based hierarchical nanomicrostructures: Facile synthesis and their applications in gas sensors and lithium-ion batteries. J Phys Chem C, 2009, 113(32): 14213–14219

    Article  CAS  Google Scholar 

  37. Zhong LS, Hu JS, Cao AM, Liu Q, Song WG, Wang LJ. 3D Flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chem Mater, 2007. 19(7): 1648–1655

    Article  CAS  Google Scholar 

  38. Yang H, Wu XL, Cao MH, Guo YG. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries. J Phys Chem C, 2009, 113(8): 3345–3351

    Article  CAS  Google Scholar 

  39. Su J, Wu XL, Yang CP, Lee JS, Kim J, Guo YG. Self-assembled LiFePO4/C nano/microspheres by using phytic acid as phosphorus source. J Phys Chem C, 2012, 116(8): 5019–5024

    Article  CAS  Google Scholar 

  40. Cao AM, Manthiram A., Shape-controlled synthesis of high tap density cathode oxides for lithium ion batteries. Phys Chem Chem Phys, 2012, 14(19): 6724–6728

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiJun Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, A., Hu, J. & Wan, L. Morphology control and shape evolution in 3D hierarchical superstructures. Sci. China Chem. 55, 2249–2256 (2012). https://doi.org/10.1007/s11426-012-4726-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4726-3

Keywords

Navigation