Skip to main content
Log in

Observation of the novel “three-pointed star” cage-like (H2O)5 cluster in a polymeric solid {[Ag2(bpp)2(H2O)2](chd)·9H2O} n

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Coordination polymeric solid, {[Ag2(bpp)2(H2O)2](chd)·9H2O} n (1) (bpp = 1,3-bis(4-pyridyl) propane, H2chd = 1,4-cyclo-hexanedicarboxylic acid), has been obtained by the solution phase ultrasonic synthesis techniques. The structure established through X-ray structural analysis shows that the compound traps an interesting 1D water tape built by the alternating “three-pointed star” cage-like pentameric and D 2h tetrameric clusters (C2/c, Z = 4; a = 30.37(2) Å, b = 9.271(5) Å, and c = 18.89(1) Å; β = 128.47°; V = 4164(4) Å3). The novelty of the present complex is the rarely crystallographic example of the cage-shaped water pentamer, which is usually ascribed to a less-stable species. A first-principle density functional theory (DFT) calculation demonstrates that the interconnectivity between cage-like pentamers and D 2h tetramers is beneficial for contribution to the structural stabilization of these less-stable water cluster species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eisenberg D, Kauzmann W. The Structure and Properties of Water. Oxford: Oxford University Press, 1969

    Google Scholar 

  2. Haymet ADJ, Dill KA. A simple model of water and the hydrophobic effect. J Am Chem Soc, 1998, 120: 3166–3175

    Article  Google Scholar 

  3. Janiak C, Scharmann TG, Mason SA. Two-dimensional water and ice layers: neutron diffraction studies at 278, 263, and 20 K. J Am Chem Soc, 2002, 124: 14010–14011

    Article  CAS  Google Scholar 

  4. Fletcher NH. The Chemical Physics of Ice. Cambridge: Cambridge University Press, 1970

    Book  Google Scholar 

  5. Liu K, Brown MG, Carter C, Saykally RJ, Gregory JK, Clary DC. Characterization of a cage form of the water hexamer. Nature, 1996, 381: 501–503

    Article  CAS  Google Scholar 

  6. Nauta K, Miller RE. Formation of cyclic water hexamer in liquid helium: the smallest piece of ice. Science, 2000, 287: 293–295

    Article  CAS  Google Scholar 

  7. Kim J, Majumdar D, Lee HM, Kim KS. Structures and energetics of the water heptamer: Comparison with the water hexamer and octamer. J Chem Phys, 1999, 110: 9128–9134

    Article  CAS  Google Scholar 

  8. Nangia A. ed. Encyclopaedia of Supramolecular Chemistry. New York: Taylor & Francis, 2007

    Google Scholar 

  9. Pan QH, Li JY, Christensen KE, Bonneau C, Ren XY, Shi L, Sun JL, Zou XD, Li GH, Yu JH, Xu RR. A germanate built from a 68126 cavity co-templated by an (H2O)16 cluster and 2-methylpiperazine. Angew Chem Int Ed, 2008, 47: 7868–7871

    Article  CAS  Google Scholar 

  10. Bi Y, Liao W, Zhang H, Li D. Assembly of “discrete” (H2O)16 water clusters within a supramolecular compound of calixarene. CrystEngComm, 2009, 11: 1213–1216

    Article  CAS  Google Scholar 

  11. Das MC, Bharadwaj PK. Molecular ice with hybrid water-bromide network around a cryptand with a bromide ion included in the cavity to form a host-within-a-host-like structure. Eur J Inorg Chem, 2007, 1229–1232

  12. Mimura M, Matsuo T, Nakashima T, Matsumoto N. Zigzag-chain and cyclic-tetrameric compounds derived by deprotonation of mononuclear copper(II) complexes with N,N′-bis(2-substituted-imidazol-4-ylmethyl-idene)-1,4-diaminobutane (2-Substituent H, Me): Synthesis, characterization, structure, substituent effect, and interconvertibility. Inorg Chem, 1998, 37: 3553–3560

    Article  CAS  Google Scholar 

  13. Xie YS, Ni J, Zheng FK, Cui Y, Wang QG, Ng SW, Zhu WH. Tetra- and binuclear complexes of hydroxy-rich ligands: Supramolecular structures, stabilization of unusual water clusters, and magnetic properties. Cryst Growth Des, 2009, 9: 118–126

    Article  CAS  Google Scholar 

  14. Custalcean R, Afloroaiei C, Vlassa M, Polverejan M. Formation of extended tapes of cyclic water hexamers in an organic molecular crystal host. Angew Chem Int Ed, 2000, 39: 3094–3096

    Article  Google Scholar 

  15. Lakshminarayanan PS, Suresh E, Ghosh P. A hybrid water-chloride structure with discrete undecameric water moieties self-assembled in a heptaprotonated octaamino cryptand. Angew Chem Int Ed, 2006, 45: 3807–3811

    Article  CAS  Google Scholar 

  16. Cheng L, Lin JB, Gong JZ, Sun AP, Ye BH, Chen XM. Encapsulation of water cluster, meso-helical chain and tapes in metal organic frameworks based on double-stranded Cd(II) helicates and carboxylates. Cryst Growth Des, 2006, 6: 2739–2746

    Article  CAS  Google Scholar 

  17. Xu WZ, Sun JL, Huang ZT, Zheng QY. Molecular encapsulation of a discrete (H2O)32 cluster with S 6 symmetry in an organic crystalline supermolecule. Chem. Commun, 2009, 171–173

  18. Wan YH, Zheng XJ, Wang FQ, Zhou XY, Wang KZ, Jin LP. Water cluster supported architecture of lanthanide coordination polymers with pyrazinetricarboxylic acid. CrystEngComm, 2009, 11: 278–283

    Article  CAS  Google Scholar 

  19. Dai FN, He HY, Sun DF. A metal organic nanotube exhibiting reversible adsorption of (H2O)12 Cluster. J Am Chem Soc, 2008, 130: 14064–14065

    Article  CAS  Google Scholar 

  20. Jin JC, Wang YY, Liu P, Liu RT, Ren C, Shi QZ. An unusual independent 1D metal-organic nanotube with mesohelica structure and 1D-2D Interdigitation. Cryst Growth Des, 2010, 10: 2029–2032

    Article  CAS  Google Scholar 

  21. Saha BK, Nangia A. First example of an ice-like water hexamer boat tape structure in a supramolecular organic host. Chem Commun, 2006, 1825–1827

  22. Sun D, Wang DF, Han XG, Zhang N, Huang RB, Zheng LS. Stepwise assembly of two 3d-4d heterometallic coordination polymers based on a hexanuclear silver(I) metalloligand. Chem Commun, 2011, 47: 746–748

    Article  CAS  Google Scholar 

  23. Sun D, Wang DF, Zhang N, Huang RB, Zheng LS. Nonamer water cluster encapsulated in a heterometallic supramolecular complex. Cryst Growth Des, 2010, 10: 5031–5033

    Article  CAS  Google Scholar 

  24. Sun D, Xu HR, Yang CF, Wei ZH, Zhang N, Huang RB, Zheng LS. Encapsulated diverse water aggregates in two Ag(I)/4,4′-bipyridine/dicarboxylate hosts: 1D water tape and chain. Cryst Growth Des, 2010, 10: 4642–4649

    Article  CAS  Google Scholar 

  25. Sun D, Wei ZH, Yang CF, Wang DF, Zhang N, Huang RB, Zheng LS. PH-dependent Ag(I) coordination architectures constructed from 4-cyanopyridine and phthalic acid: From discrete structure to 2D sheet. CrystEngComm, 2011, 13: 1591–1601

    Article  CAS  Google Scholar 

  26. Yuan G, Zhu C, Liu Y, Fang Y, Cui Y. Water clusters induced assembly of chiral organic microstructures showing reversible phase transformations and luminescence switching. Chem Commun, 2010, 46: 2307–2309

    Article  CAS  Google Scholar 

  27. Sun D, Wang DF, Zhang N, Liu FJ, Hao HJ, Huang RB, Zheng LS. Capture and activation of aerial CO2 by carbamoylation of L-threonine in a Ag(I) supramolecular framework. Dalton Trans, 2011, 40: 5677–5679

    Article  CAS  Google Scholar 

  28. Fei Z, Zhao D, Geldbach TJ, Scopelliti R, Dyson PJ, Antonijevic S, Bodenhausen G. A synthetic zwitterionic water channel: characterization in the solid state by X-ray crystallography and nmr spectroscopy. Angew Chem Int Ed, 2005, 44: 5720–5725

    Article  CAS  Google Scholar 

  29. Mukherjee A, Saha MK, Nethaji M, Chakravarty AR. Helical supramolecular host with aquapores anchoring alternate molecules of helical water chains. Chem Commun, 2004, 716–717

  30. Natarajan R, Charmant JPH, Orpen AG, Davi AP, Water chains in hydrophobic crystal channels: nanoporous materials as supramolecular analogues of carbon nanotubes. Angew Chem Int Ed, 2010, 49: 5125–5129

    Article  CAS  Google Scholar 

  31. Saha BK, Nangia A. Helical water chains in aquapores of organic hexahost: Remarkable halogen-substitution effect on the handedness of water helix. Chem Commun, 2005, 3024–3026

  32. Cui Y, Cao ML, Yang LF, Niu YL, Ye BH. Water nanotubes confined to nanochannels of a (10, 3)-b net constructedby binary building blocks via the R2 2(9) synthon. CrystEngComm, 2008, 10: 1288–1290

    Article  CAS  Google Scholar 

  33. Xiong HB, Sun D, Luo GG, Huang RB, Dai JC, One 1D T4(0)A(0) water tape embedded in a 1D Cu(II) coordination polymer with 1,3-bis(4-pyridyl) propane. J Mol Struct, 2011, 990: 164–168

    Article  CAS  Google Scholar 

  34. Shi XF, Song HB, He L, Zhang WQ. Observation of a quasi-one-dimensional water aggregate in a supramolecular organic host. CrystEngComm, 2009, 11: 542–544

    Article  CAS  Google Scholar 

  35. Ma BQ, Sun HL, Gao S. Observation of an octameric water cluster containing a book-shaped hexamer in a 4f-3d complex. Chem Commun, 2005, 2336–2338

  36. Tadokoro M, Fukui S, Kitajima T, Nagao Y, Ishimaru S, Kitagawa H, Isobee K, Nakasuji K. Structures and phase transition of multi-layered water nanotube confined to nanochannels. Chem Commun, 2006, 1274–1276

  37. Custelcean R, Afloroaei C, Vlassa M, Polverejan M. Formation of extended tapes of cyclic water hexamers in an organic molecular crystal host. Angew Chem Int Ed, 2000, 39: 3094–3096

    Article  CAS  Google Scholar 

  38. Fabelo O, Pasán J, Cañadillas-Delgado L, Delgado FS, Labrador A, Lloret F, Julve M, Ruiz-Pérez C. Well-resolved unusual alternating cyclic water tetramers embedded in a crystal host. CrystEngComm, 2008, 10: 1743–1746

    Article  CAS  Google Scholar 

  39. Luan XJ, Chu YC, Wang YY, Li DS, Liu P, Shi QZ. Formation of two-dimensional supramolecular water layer containing (H2O) morphology via dianion templating. Cryst. Growth Des, 2006, 6: 812–814

    Article  CAS  Google Scholar 

  40. Oxtoby NS, Blake AJ, Champness NR, Wilson C. Water superstructures within organic arrays; Hydrogen-bonded water sheets, chains and clusters Chem Eur J, 2005, 11: 4643–4654

    Article  CAS  Google Scholar 

  41. Zhang JP, Huang XC, Lin YY, Chen XM. Well-resolved, new water morphologies obtained by modification of the hydrophilic/hydro-phobic character and shapes of the supporting layers. Inorg Chem, 2005, 44: 3146–3150

    Article  CAS  Google Scholar 

  42. Lakshminarayanan PS, Suresh EI, Ghost P. Formation of an infinite 2D-layered water of (H2O)45 cluster in a cryptand-water supramolecular complex. J Am Chem Soc, 2005, 127: 13132–13133

    Article  CAS  Google Scholar 

  43. Fei ZF, Geldbach TJ, Zhao DB, Scopelliti R, Dyson PJ. A nearly planar water sheet sandwiched between strontium-imidazolium carboxylate coordination polymers. Inorg Chem, 2005, 44: 5200–5202

    Article  CAS  Google Scholar 

  44. Yang AH, Zhang H, Gao HL, Zhang WQ, He L, Cui JZ. Novel water clusters in two complexes of pyridine-2,3,5,6-tetracarboxylate. Cryst Growth Des, 2008, 8: 3354–3359

    Article  CAS  Google Scholar 

  45. Carballo R, Covelo B, Lodeiro C, Vázquez-López EM. One-dimensional fluorescent stacking structure based on zinc mixed-complex salt encapsulated within an “ice-like” three-dimensional hydrogen-bonded water network. CrystEngComm, 2005, 7: 294–296

    Article  CAS  Google Scholar 

  46. Carballo R, Covelo B, Fernández-Hermida N, García-Martínez E, Lago AB, Vázauez M, Vázauez-López EM. Supramolecular aggregation of hexameric water clusters into a 2D water polymer containing (H2O)18 holes. Cryst Growth Des, 2006, 6: 629–631

    Article  CAS  Google Scholar 

  47. Li CH, Huang KL, Dou JM, Chi YN, Xu YQ, Shen L, Wang DQ, Hu CW. An interesting six-connected 3D nanowater framework constructed from turbine-type (H2O)18 clusters based on a Mn(III) complex. Cryst Growth Des, 2008, 8: 3141–3143

    Article  CAS  Google Scholar 

  48. Liu K, Btown MG, Cruzan JD, Saykally RJ. Vibration-rotation tunneling spectra of the water pentamer: structure and dynamics. Science, 1996, 271: 62–64

    Article  CAS  Google Scholar 

  49. Zabel V, Saenger W, Mason SA. Topography of cyclodextrin inclusion complexes. Part 23. Neutron diffraction study of the hydrogen bonding in.beta.-cyclodextrin undecahydrate at 120 K: From dynamic flip-flops to static homodromic chains. J Am Chem Soc, 1986, 108: 3664–3673

    Article  CAS  Google Scholar 

  50. Zheng JM, Batten SR, Du M. A unique cyanide-bridged three-dimensional (3-D) copper(II)-copper(I) mixed-valence polymer containing 1-D water tapes with cyclic pentamer units. Inorg Chem, 2005, 44: 3371–3372

    Article  CAS  Google Scholar 

  51. Ma BQ, Sun HL, Gao S. Cyclic water pentamer in a tape-like structure. Chem Commun, 2004, 2220–2221

  52. Ugalde JM, Alkorta I, Elguero J. Water clusters: Towards an understanding based on first principles of their static and dynamic properties. Angew Chem Int Ed, 2000, 39: 717–721

    Article  CAS  Google Scholar 

  53. Wales DJ, Walsh TR. Theoretical study of the water pentamer. J Chem Phys, 1996, 105: 6957–6971

    Article  CAS  Google Scholar 

  54. Barbour LJ, Orr GW, Atwood JL. An intermolecular (H2O)10 cluster in a solid-state. Nature, 1998, 393: 671–673

    Article  CAS  Google Scholar 

  55. Blanton WB, Gordon-Wylie SW, Clark GR, Jordan KD, Wood JT, Geiser U, Collins TJ. Synthesis and crystallographic characterization of an octameric water complex (H2O)8. J Am Chem Soc, 1999, 121: 3551–3552

    Article  CAS  Google Scholar 

  56. Barbour LJ, Orr GW, Atwood JL. Characterization of a well resolved supramolecular ice-like (H2O)10 cluster in the solid state. Chem Commun, 2000, 859–860

  57. Sreenivasulu B, Vittal JJ. Helix inside a helix: encapsulation of hydrogen-bonded water molecules in a staircase coordination polymer. Angew Chem Int Ed, 2004, 43: 5769–5772

    Article  CAS  Google Scholar 

  58. Atwood JL, Barbour LJ, Ness TJ, Raston CL, Raston PL. A well-resolved ice-like (H2O)8 cluster in an organic supramolecular complex. J Am Chem Soc, 2001, 123: 7192–7193.

    Article  CAS  Google Scholar 

  59. Pal S, Sankaran NB, Samanta A. Structure of a self-assembled chain of water molecules in a crystal host. Angew Chem Int Ed, 2003, 42: 1741–1743

    Article  CAS  Google Scholar 

  60. Ma BQ, Sun HL, Gao S. Formation of two-dimensional supramolecular icelike layer containing (H2O)12 rings. Angew Chem Int Ed, 2004, 43: 1374–1376

    Article  CAS  Google Scholar 

  61. Cheruzel LE, Pometun MS, Cecil MR, Mashuta MS, Wittebort RJ, Buchanan RM. Structures and solid-state dynamics of one-dimensional water chains stabilized by imidazole channels. Angew Chem Int Ed, 2003, 42: 5452–5455

    Article  CAS  Google Scholar 

  62. Raghuraman K, Katti KK, Barbour LJ, Pillarsetty N, Barnes, CL, Katti KV. Characterization of supramolecular (H2O)18 water morphology and water-methanol (H2O)15(CH3OH)3 clusters in a novel phosphorus functionalized trimeric amino acid host. J Am Chem Soc, 2003, 125: 6955–6961

    Article  CAS  Google Scholar 

  63. Luo GG, Xiong HB, Dai JC. Syntheses, structural characterization and properties of {[Cu(bpp)2(H2O)2](tp)·7H2O} and {[Cu(bpp)2(H2O)](ip)·7H2O} complexes. New examples of organic anionic template-effect on induced assembly of water clusters. Cryst Growth Des, 2011, 11: 507–515

    Article  CAS  Google Scholar 

  64. Wang XL, Qin C, Wang EB. Polythreading of infinite 1D chains into different structural motifs: Two poly(pseudo-rotaxane) architectures constructed by concomitant coordinative and hydrogen bonds. Cryst Growth Des, 2006, 6: 439–443

    Article  CAS  Google Scholar 

  65. Luo GG, Xiong HB, Sun D, Wu DL, Huang RB, Dai JC. A discrete spirocyclic (H2O)9 cluster and 1D novel water chain with tetrameric and octameric clusters in cationic hosts. Cryst Growth Des, 2011, 11: 1948–1956

    Article  CAS  Google Scholar 

  66. Chen B, Park JM, Iavnov I, Tabacchi G, Klein ML, Parrinello M. First-principles study of aqueous hydroxide solutions. J Am Chem Soc, 2002, 124: 8534–8535

    Article  CAS  Google Scholar 

  67. Achatz U, Fox BS, Beyer MK, Bondybey VE. Hypoiodous acid as guest molecule in protonated water clusters: A combined FT-ICR/DFT study of I(H2O)n. J Am Chem Soc, 2001, 123: 6151–6160

    Article  CAS  Google Scholar 

  68. Cho SJ, Hwang HS, Park JM, Oh KS, Kim KS. Starands vs ketonands: ab initio study. J Am Chem Soc, 1996, 118: 485–486

    Article  Google Scholar 

  69. Kim KS, Lee JY, Lee SJ, Ha TS, Kim DH. On binding forces between aromatic ring and quaternary ammonium compound. J Am Chem Soc, 1994, 116: 7399–7400

    Article  CAS  Google Scholar 

  70. Minofar B, Vrbka L, Mucha M, Jungwirth P, Yang X, Wang XB, Fu YJ, Wang LS. Interior and interfacial aqueous solvation of benzene dicarboxylate dianions and their methylated analogues: A combined molecular dynamics and photoelectron spectroscopy study. J Phys Chem A, 2005, 109: 5042–5049

    Article  CAS  Google Scholar 

  71. Minofar B, Mucha M, Jungwirth P, Yang X, Fu YJ, Wang XB, Wang LS. Bulk versus interfacial aqueous solvation of dicarboxylate dianions. J Am Chem Soc, 2004, 126: 11691–11698

    Article  CAS  Google Scholar 

  72. Higashi T. ABSCOR, Empirical absorption correction based on fourier series approximation, Rigaku Corporation, Tokyo, 1995

    Google Scholar 

  73. Sheldrick GM. SHELXS-97, Program for X-ray crystal structure determination, University of Gottingen, Germany, 1997

    Google Scholar 

  74. Sheldrick GM. SHELXL-97, Program for X-ray crystal structure refinement, University of Gottingen, Germany, 1997.

    Google Scholar 

  75. Spek AL. Implemented as the PLATON procedure, a multipurpose crystallographic tool, Utrecht University, Ultrecht, The Netherlands, 1998

    Google Scholar 

  76. Brandenburg K. DIAMOND, Version 3.1f, Crystal Impact GbR, Bonn, Germany

  77. Materials Studio Program, Version 4.3, Accelrys, San Diego, CA, 2008

  78. Sun DF, Cao R, Bi WH, Hong MC, Chang YL. Syntheses and characterizations of a series of silver-carboxylate polymers. Inorg Chim Acta, 2004, 357: 991–1001

    Article  CAS  Google Scholar 

  79. Smith G, Reddy AN, Byriel KA, Kennard CHL. Preparation and crystal structures of the silver(I) carboxylates [Ag2{C6H4(CO2)2}(NH3)2], [NH4][Ag5{C6H3(CO2)3}2-(NH3)2(H2O)2]·H2O and [NH4][Ag{C4H2N2 (CO2)2}]. JCS Dalton Trans, 1995, 3565–3570

  80. Hao HQ, Liu WT, Tan W, Lin ZJ, Tong ML. Enantiopure and racemic sandwich-like networks with dehydration, readsorption, and selective guest-exchange phase transformations. Cryst Growth Des, 2009, 9: 457–465

    Article  CAS  Google Scholar 

  81. Carlucci L, Ciani G, Proserpio DM, Rizzato S. New polymeric networks from the self-assembly of silver(I) salts and the flexible ligand 1,3-bis(4-pyridyl)propane (bpp). A systematic investigation of the effects of the counterions and a survey of the coordination polymers based on bpp. CrystEngComm, 2002, 4: 121–129

    Article  CAS  Google Scholar 

  82. Mascal M, Kerdelhue JL, Blake AJ, Cooke PA, Mortimer RJ, Teat SJ. On the nature of arene η6 interactions in the solid state and the use of cylindrophanes as ligands for sandwich complexation of metals with longer-range interactions with the benzene ring. Eur J Inorg Chem, 2000, 485–490

  83. Zheng XF, Zhu LG. Influence of different N-donor ligands on the supramolecular architectures and abundant weak interactions of silver 2-sulfobenzoate polymers. Cryst Growth Des, 2009, 9: 4407–4417

    Article  CAS  Google Scholar 

  84. Jin JC, Wang YY, Zhang WH, Lermontov AS, Lermontova EK, Shi QZ. New types of di-, tetra-, hexa- and octanuclear Ag(I) complexes containing 1,3-adamantanedicarboxylic acid. Dalton Trans, 2009, 10181–10191

  85. Pan L, Woodlock EB, Wang XT, Lam KC, Rheingold AL. Novel silver(I)-organic coordination polymers: conversion of extended structures in the solid state as driven by argentophilic interactions. Chem Commun, 2001, 1762–1763

  86. Carlucci L, Ciani G, Gudenberg DWV, Proserpio DM. Self-assembly of infinite double helical and tubular coordination polymers from Ag(CF3SO3) and 1,3-bis(4-pyridyl)propane. Inorg Chem, 1997, 36: 3812–3813

    Article  CAS  Google Scholar 

  87. Seinfeld JH, Pankow JF. Organic atmospheric particulate material. Annu Rev Phys Chem, 2003, 54: 121–140

    Article  CAS  Google Scholar 

  88. Naskar JP, Drew MGB, Hulme A, Tocher DA, Datta D. Occurrence of ribbons of cyclic water pentamers in a metallo-organic framework formed by spontaneous fixation of CO2. CrysEngComm, 2005, 7: 67–70

    Article  CAS  Google Scholar 

  89. The results of CSD search show that there are approximately 24 structures probably contain the water motif of cage-like (H2O)5 cluster, i.e. CEYMIC, COENCL, COTENC, CRTENC, DOGRIA, GIZLIL, LEZJOQ, LUNNIS, NUVLEW, PERRAF02, POLDOK, POLDUQ, POZCUC, QAQLAV, QAZJIK, QUFGEE, RUPGOZ, TEGZUA, TOHPIQ, TOHPOW, UDUKEK, WABKIU, WEVRUK and NUPDOS01, of which only 9 structures (COENCL, GIZLIL, LUNNIS, NUPDOS01, POZCUC, QAQLAV, RUPGOZ, TOHPIQ and TOHPOW) are suspected to have the analogous “star” cage water motif in the further inspection. However, all of these suspected “star” cage water motifs gave the larger U values or badly ellipsoids without detailed hydrogen sites and their water structures did not have been described and discussed.

  90. Burke LA, Jensen JO, Jensen JL, Krishanan PN. Theoretical study of water clusters. I. Pentamer. Chem Phys Lett, 1993, 206: 293–296

    Article  CAS  Google Scholar 

  91. Masella M, Gresh N, Flament JP. A theoretical study of nonadditive effects in four water tetramers. JCS Faraday Trans, 1998, 94: 2745–2753

    Article  CAS  Google Scholar 

  92. Sainz G, Carrell CJ, Ponamerev MV, Soriano GM, Cramer WA, Smith JL. Interruption of the internal water chain of cytochrome f impairs photosynthetic function. Biochemistry, 2000, 39: 9164–9173

    Article  CAS  Google Scholar 

  93. Jude KM, Wright SK, Tu C, Silverman DN, Viola RE, Chrisianson DW. Crystal structure of F65A/Y131C-methlimidazole carbonic anhydrase V reveals architectural features of an engineered proton shuttle. Biochemistry, 2002, 41: 2485–2491

    Article  CAS  Google Scholar 

  94. Ye BH, Sun AP, Wu TF, Weng YQ, Chen XM. Tapes of cyclic water tetramers in the double-helical complex [Cd2(bpa)2Cl4]·6H2O. Eur J Inorg Chem, 2005, 1230–1234

  95. Ma BQ, Sun HL, Gao S. Vertex-sharing water tape consisting of cyclic hexamers. Eur J Inorg Chem, 2005, 3902–3906

  96. Jin Y, Che Y, Batten SR, Chen P, Zheng J. Unusual T4(1) water chain stabilized in the one-dimensional chains of a copper(II) coordination polymer. Eur J Inorg Chem, 2007, 1925–1935

  97. Allen FH. The cambridge structural database: A quarter of a million crystal structures and rising. Acta Crystallogr Sect B: Struct Sci, 2002, 58: 380–388

    Article  CAS  Google Scholar 

  98. Infantes L, Motherwell S. Water clusters in organic molecular crystals. CrystEngComm, 2002, 4: 454–461

    Article  CAS  Google Scholar 

  99. Mascal M, Infantes L, Chisholm J. Water oligomers in crystal hydrates-what’s news and what isn’t? Angew Chem Int Ed, 2006, 45: 32–36

    Article  CAS  Google Scholar 

  100. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  101. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Oritiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, revision B.05; Gaussian, Inc., Pittsburgh, PA, 2003

    Google Scholar 

  102. de Pablo L, Chávez ML, Sum AK, de Pablo JJ. Monte Carlo molecular simulation of the hydration of Na-montmorillonite at reservoir conditions. J Chem Phys, 2004, 120: 939–947

    Article  CAS  Google Scholar 

  103. Prins LJ, Reinhoudt DN, Timmerman P. Noncovalent synthesis using hydrogen bonding. Angew Chem Int Ed, 2001, 40: 2382–2426

    Article  CAS  Google Scholar 

  104. Buck U, Huisken F. Infrared spectroscopy of size-selected water and methanol clusters. Chem Rev, 2000, 100: 3863–3890

    Article  CAS  Google Scholar 

  105. Ghosh SK, Bharadwaj PK. Structure of a discrete hexadecameric water cluster in a metal-organic framework structure. Inorg Chem, 2004, 43: 6887–6689

    Article  CAS  Google Scholar 

  106. Bellamy LJ. The Infrared Spectra of Complex Molecules. Wiley: New York, 1958

    Google Scholar 

  107. Zhang ML, Li DS, Wang JJ, Fu F, Du M, Zou K, Gao XM. Structural diversity and properties of ZnII and CdII complexes with a flexible dicarboxylate building block 1,3-phenylenedi-acetate and various heterocyclic co-ligands. Dalton Trans, 2009, 5355–5364

  108. Li CP, Du M. Role of solvents in coordination supramolecular systems. Chem Commun, 2011, 47: 5958–5972

    Article  CAS  Google Scholar 

  109. Chen XD, Zhao XH, Chen M, Du M. A 3D copper(II) coordination framework showing different kinetic and thermodynamic crystal transformations through removal of guest water cubes. Chem Eur J, 2009, 15: 12974–12977

    Article  CAS  Google Scholar 

  110. Zhang XM, Fang RQ, Wu HS. Extended water tapes of cyclic hexamers encapsulated in the channels of a metal phosphonocarboxylate network. Cryst Growth & Des, 2005, 5: 1335–1337

    Article  CAS  Google Scholar 

  111. Dai JC, Fu ZY, Wu XT. Supramolecular Coordination Polymers. in Encyclopedia of Nanoscience and Nanotechnology. Nalwa HS, ed. American Scientific Publishers, 2004, 10: 247–266

  112. Dai JC, Wu XT, Fu ZY, Cui CP, Hu SM, Du WX, Wu LM, Zhang HH, Sun RQ. Synthesis, structure, and fluorescence of the novel cadmium(II)-trimesate coordination polymers with different coordination architectures. Inorg Chem, 2002, 41: 1391–1396

    Article  CAS  Google Scholar 

  113. Dai JC, Wu XT, Fu ZY, Hu SM, Du WX, Cui CP, Wu LM, Zhang HH, Sun RQ. A novel ribbon-candy-like supramolecular architecture of cadmiumterephthalate polymer with giant rhombic channels: Two-fold interpenetration of the 3D 8210-a net. Chem Commun, 2002, 12–13

  114. Yang GD, Dai JC, Lian YX, Wu WS, Lin JM, Hu SM, Sheng TL, Fu ZY, Wu XT. [Ph3PCH2Ph]2[Zn3(tp)3Cl2] and Ni3(tma)2(H2O)8: Two unusual claylike frameworks of metal-polycarboxylate coordination polymers (tp = terephthalate, tma = trimesate). Inorg Chem, 2007, 46: 7910–7916

    Article  CAS  Google Scholar 

  115. Liu L, Huang SP, Yang GD, Zhang H, Wang XL, Fu ZY, Dai JC. Zn[Htma][ddm]: An interesting three-dimensional chiral nonlinear optical-active zinc-trimesate framework. Cryst Growth Des, 2010, 10: 930–936

    Article  CAS  Google Scholar 

  116. Lian YX, Yang GD, Fu ZY, Wang XL, Liu L, Dai JC. Cationic induced assembly of two 2D zinc-terephthalate polymeric networks. Inorg Chim Acta, 2009, 362: 3901–3909

    Article  CAS  Google Scholar 

  117. Dai JC, Wu XT, Hu SM, Fu ZY, Zhang JJ, Du WX, Zhang HH, Sun RQ. Crystal engineering of the coordination architecture of metal polycarboxylate complexes by hydrothermal synthesis: assembly and characterization of four novel cadmium polycarboxylate coordination polymers based on mixed ligands. Eur J Inorg Chem, 2004, 2096–2106

  118. Dai JC, Hu SM, Wu XT, Fu ZY, Du WX, Zhang HH, Sun RQ. A novel 2D bilayer architecture generated via π-π interactions and host-guest molecular recognition: Assembly and structure of {[Cd(Htma)(bpy)(H2O)]·(H2tp)0.5·2H2O}n polymer (tma = trimesate, bpy = 4,4′-bipyridine, tp = terephthalate). New J Chem, 2003, 23: 914–918

    Article  CAS  Google Scholar 

  119. Su Z, Xu J, Fan J, Liu DJ, Chu Q, Chen MS, Chen SS, Liu GX, Wang XF, Sun WY. Synthesis, crystal structure, and photoluminescence of coordination polymers with mixed ligands and diverse topologies. Cryst Growth Des, 2009, 9: 2801–2811

    Article  CAS  Google Scholar 

  120. Chen SS, Fan J, Okamura TA, Chen MS, Su Z, Sun WY, Ueyama N. Synthesis, crystal structure, and photoluminescence of a series of zinc(II) coordination polymers with 1,4-di(1h-imidazol-4-yl)benzene and varied carboxylate ligands. Cryst Growth Des, 2010, 10: 812–822

    Article  CAS  Google Scholar 

  121. Chi YN, Huang KL, Cui FY, Xu YQ, Hu CW. Structural diversity of silver(I) 4,6-dipyridyl-2-aminopyrimidine complexes: Effect of counteranions and ligand isomerism. Inorg Chem, 2006, 45: 10605–10612

    Article  CAS  Google Scholar 

  122. Fei BL, Sun WY, Okamura T, Tang WX, Ueyama N. Synthesis and crystal structure of a luminescent infinite 2D brick-wall network with two- and three-coordinate silver(I) atoms and ligand-unsupported silver-silver interactions. New J Chem, 2001, 25: 210–212

    Article  CAS  Google Scholar 

  123. Chen WJ, Wang Y, Chen C, Yue Q, Yuan HM, Chen JS, Wang SN. Photoluminescent metal-organic polymer constructed from trimetallic clusters and mixed carboxylates. Inorg Chem, 2003, 42: 944–946

    Article  CAS  Google Scholar 

  124. Shi X, Zhu GS, Wang XH, Li GH, Fang QR, Zhao XJ, Wu G, Tian G, Xue M, Wang RW, Qiu SL. Polymeric frameworks constructed from a metal organic coordination compound, in 1-D and 2-D systems: synthesis, crystal structures, and fluorescent properties. Cryst Growth Des, 2005, 5: 341–346

    Article  CAS  Google Scholar 

  125. Wu G, Wang XF, Okamura TA, Sun WY, Ueyama N. Syntheses, structures, and photoluminescence properties of metal(II) halide complexes with pyridine-containing flexible tripodal ligands. Inorg Chem, 2006, 45: 8523–8532

    Article  CAS  Google Scholar 

  126. Zhu HF, Fan J, Okamura TA, Sun WY, Ueyama N. Syntheses and structures of zinc(II), silver(I), copper(II), and cobalt(II) complexes with imidazole-containing ligand: 1-(1-imidazolyl)-4-(imidazol-1-ylmethyl) benzene. Cryst Growth Des, 2005, 5: 289–294

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JingCao Dai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, G., Xiong, H., Fu, Z. et al. Observation of the novel “three-pointed star” cage-like (H2O)5 cluster in a polymeric solid {[Ag2(bpp)2(H2O)2](chd)·9H2O} n . Sci. China Chem. 55, 2104–2114 (2012). https://doi.org/10.1007/s11426-012-4581-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4581-2

Keywords

Navigation