Skip to main content
Log in

Light scattering investigations on mercury ion induced amalgamation of gold nanoparticles in aqueous medium

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

With the aids of SEM, XPS measurements, localized plasmon resonance light scattering (PRLS) spectrometry and light scattering imaging, investigations on the amalgamation process of both cetyltrimethylammonium bromide (CTAB) and citrate-coated gold nanoparticles (AuNPs) in the presence of Hg2+ showed that the Au-Hg amalgam process of gold nanoparticles is surface coating dependent in aqueous medium, and the scattering light color change of AuNPs under a dark-field microscope is blue-shifted from red-orange into yellow-orange or even yellow. The former one involves the reduction of Hg2+ to Hg0 species and adsorption of Hg0 on the surfaces of AuNPs, while the later one indicates the shape-evolution of AuNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrosse-Antle LE, Xiao L, Wildgoose GG, Baron R, Salter JC, Crossley A, Compton G R. The expansion/contraction of gold microparticles during voltammetrically induced amalgamation leads to mechanical instability. New J Chem, 2007, 31: 2071–2075; Paruchuri Y, Siuniak A, Johnson N, Levin E, Mitchell K, Goodrich JM, Renne EP, Basu N. Occupational and environmental mercury exposure among small-scale gold miners in the Talensi-Nabdam District of Ghana’s Upper East region. Sci Total Environ, 2010, 408: 6079–6085

    Article  CAS  Google Scholar 

  2. Welch CM, Nekrassova O, Dai X, Hyde ME, Compton RG. Fabrication, characterisation and voltammetric studies of gold amalgam nanoparticle modified electrodes. ChemPhysChem, 2004, 5: 1405–1410

    Article  CAS  Google Scholar 

  3. Henglein A, Giersig M. Optical and chemical observations on gold-mercury nanoparticles in aqueous solution. J Phys Chem B, 2000, 104: 5056–5060

    Article  CAS  Google Scholar 

  4. Kobiela T, Nowakowski B, Duś R. The influence of gas phase composition on the process of Au-Hg amalgam formation. Appl Surf Sci, 2003, 206: 78–89

    Article  CAS  Google Scholar 

  5. Fiałkowski M, Grzeszczak P, Nowakowski R, Hołyst R. Absorption of mercury in gold films and its further desorption: Quantitative morphological study of the surface patterns. J Phys Chem B, 2004, 108: 5026–5030; Brown RJC, Kumar Y, Brown AS, Kim KH. Memory effects on adsorption tubes for mercury vapor measurement in ambient air: Elucidation, quantification, and strategies for mitigation of analytical bias. Environ Sci Technol, 2011, 45: 7812–7818

    Article  Google Scholar 

  6. Morris T, Copeland H, McLinden E, Wilson S, Szulczewski G. The effects of mercury adsorption on the optical response of size-selected gold and silver nanoparticles. Langmuir, 2002, 18: 7261–7264

    Article  CAS  Google Scholar 

  7. Morris T, Szulczewski G. A spectroscopic ellipsometry, surface plasmon resonance, and X-ray photoelectron spectroscopy study of Hg adsorption on gold surfaces. Langmuir, 2002, 18: 2260–2264

    Article  CAS  Google Scholar 

  8. Morris T, Szulczewski G. Evaluating the role of coinage metal films in the detection of mercury vapor by surface plasmon resonance spectroscopy. Langmuir, 2002, 18: 5823–5829

    Article  CAS  Google Scholar 

  9. Gomes MTSR, Oliveira MO, Oliveira JABP. Utilization of a quartz crystal microbalance to obtain Au-Hg phase diagrams. Langmuir, 1999, 15: 8780–8782

    Article  CAS  Google Scholar 

  10. Watson CM, Dwyer DJ, Andle JC, Bruce AE, Bruce MRM. Stripping analyses of mercury using gold electrodes: Irreversible adsorption of mercury. Anal Chem, 1999, 71: 3181–3186

    Article  CAS  Google Scholar 

  11. Herrero E, Abruña HD. Anion effects on the kinetics of mercury under potential deposition on Au (111) electrodes. J Phys Chem B, 1998, 102: 444–451

    Article  CAS  Google Scholar 

  12. Herrero E, Abruña HD. Underpotential deposition of mercury on Au (111): electrochemical studies and comparison with structural investigations. Langmuir, 1997, 13: 4446–4453

    Article  CAS  Google Scholar 

  13. Wang J, Wu H, Huang CZ. Investigations on the amalgamation of gold nanorods by iodine and the detection of tetracycline. Sci China Ser B Chem, 2009, 52: 188–195; Liu Y, Ling L, Huang CZ. Individually color-coded plasmonic nanoparticels for RGB analysis. Chem Commun, 2011, 47: 8121–8123

    Article  CAS  Google Scholar 

  14. He W, Li YF, Huang CZ, Xie JP, Yang RG, Zhou PF, Wang J. A one-step label-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods. Anal Chem, 2008, 80: 8424–8430

    Article  CAS  Google Scholar 

  15. Liu Y, Ling J, Li YF, Huang CZ. The adsorption of silver nanoparticles on the proteins-immobilized glass slides and a visual investigation on proteins immobilization. Sci China Ser B-Chem, 2009, 52: 639–643

    Article  CAS  Google Scholar 

  16. Wang Y, Li, YF, Wang J, Sang Y, Huang CZ. End-to-end assembly of gold nanorods by means of oligonucleotide-mercury (II). Chem Commun, 2010, 46: 1332–1334

    Article  Google Scholar 

  17. Grabar KC, Freeman RG, Hommer MB, Natan MJ. Preparation and Characterization of Au Colloid Monolayers. Anal Chem, 1995, 67: 735–743

    Article  CAS  Google Scholar 

  18. Sau TK, Murphy CJ. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc, 2004, 126: 8648–8649

    Article  CAS  Google Scholar 

  19. Liu ZD, Huang CZ, Li YF, Long YF. Enhanced plasmon resonance light scattering signals of colloidal gold resulted from its interactions with organic small molecules using captopril as an example. Anal Chim Acta, 2006, 577: 244–249

    Article  CAS  Google Scholar 

  20. Wu LP, Li YF, Huang CZ, Zhang Q. Visual detection of sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles. Anal Chem, 2006, 78: 5570–5577

    Article  CAS  Google Scholar 

  21. Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B, 1999, 103: 8410–8426

    Article  CAS  Google Scholar 

  22. Nusz GJ, Marinakos SM, Curry AC, Dahlin A, Hŏŏk F, Wax A, Chilkoti A. Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal Chem, 2008, 80: 984–989

    Article  CAS  Google Scholar 

  23. Rex M, Hernandez FE, Campiglia AD. Pushing the limits of mercury sensors with gold nanorods. Anal Chem, 2006, 78: 445–451

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChengZhi Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, W., Wang, Y., Wang, J. et al. Light scattering investigations on mercury ion induced amalgamation of gold nanoparticles in aqueous medium. Sci. China Chem. 55, 1445–1450 (2012). https://doi.org/10.1007/s11426-012-4494-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4494-0

Keywords

Navigation