Skip to main content
Log in

A hybrid carboxylate-water decamer with a discrete octameric water moiety self-assembled in a 2D copper(II) coordination polymer

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An octameric water moiety which consists of a chairlike water hexamer and two pendent water molecules in the 1,4-diaxial positions and shows a similar structure to the hydrocarbon (1r,4r)-1,4-dimethylcyclohexane, is unambiguously trapped in a 2D Cu(II) mixed-ligand coordination polymer, {[Cu2(bpp)2(H2O)2(bpda)2]·6H2O} n (1) (bpp = 1,3-bis(4-pyridyl)propane and H2bpda = 2,2′-biphenyldicarboxylic acid). The water octamer can be extended into a hybrid carboxylate-water decamer when carboxylic oxygen atoms from bpda2− are involved. Interestingly, the present hybrid decamer bears a similar structural topology to a butterfly (H2O)10 cluster. The reversible dehydration/hydration of 1 is determined by X-ray powder diffraction studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zwier TS. Enhanced: The structure of protonated water clusters. Science, 2004, 304: 1119–1120

    Article  CAS  Google Scholar 

  2. Miyazaki M, Fujii A, Ebata T, Mikami N. Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science, 2004, 304: 1134–1137

    Article  CAS  Google Scholar 

  3. Eisenberg D, Kauzmann W. The Structure and Properties of Water. United Kingdom: Oxford University Press, 1969

    Google Scholar 

  4. Silverstein KAT, Haymet ADJ, Dill KA. A simple model of water and the hydrophobic effect. J Am Chem Soc, 1998, 120: 3166–3175

    Article  CAS  Google Scholar 

  5. Janiak C, Scharmann TG, Mason SA. Two-dimensional water and ice layers: Neutron diffraction studies at 278, 263, and 20 K. J Am Chem Soc, 2002, 124: 14010–14011

    Article  CAS  Google Scholar 

  6. Baldelli S, Schnitzer C, Campbell DJ, Shultz MJ. Effect of H2SO4 and alkali metal SO4 2−/HSO4 salt solutions on surface water molecules using sum frequency generation. J Phys Chem B, 1999, 103: 2789–2795

    Article  CAS  Google Scholar 

  7. Moorthy JN, Natarajan R, Venugopalan P. Characterization of a planar cyclic form of water hexamer in an organic supramolecular complex: An unusual self-assembly of bimesityl-3,3′-dicarboxylic acid. Angew Chem Int Ed, 2002, 41: 3417–3420

    Article  CAS  Google Scholar 

  8. Pal S, Sankaran NB, Samanta A. Structure of a self-assembled chain of water molecules in a crystal host. Angew Chem Int Ed, 2003, 42: 1741–1743

    Article  CAS  Google Scholar 

  9. Ma BQ, Sun HL, Gao S. Formation of two-dimensional supramolecular icelike layer containing (H2O)12 rings. Angew Chem Int Ed, 2004, 43: 1374–1376

    Article  CAS  Google Scholar 

  10. Rodriguez-Cuamatzi P, Vargas-Diaz G, Höpfl H. Modification of 2D water that contains hexameric units in chair and boat conformations-a contribution to the structural elucidation of bulk water. Angew Chem Int Ed, 2004, 43: 3041–3044

    Article  CAS  Google Scholar 

  11. Ghosh SK, Bharadwaj PK. A dodecameric water cluster built around a cyclic quasiplanar hexameric core in an organic supramolecular complex of a cryptand. Angew Chem Int Ed, 2004, 43: 3577–3580

    Article  CAS  Google Scholar 

  12. Sreenivasulu B, Vittal JJ. Helix inside a helix: encapsulation of hydrogen-bonded water molecules in a staircase coordination polymer. Angew Chem Int Ed, 2004, 43: 5769–5772

    Article  CAS  Google Scholar 

  13. Mir MH, Vittal JJ. Phase transition accompanied by transformation of an elusive discrete cyclic water heptamer to a bicyclic (H2O)7 cluster. Angew Chem Int Ed, 2007, 46: 5925–5928

    Article  CAS  Google Scholar 

  14. Natarajan R, Charmant JPH, Orpen AG, Davis AP. Water chains in hydrophobic crystal channels: Nanoporous materials as supramolecular analogues of carbon nanotubes. Angew Chem Int Ed, 2010, 49: 5125–5129

    Article  CAS  Google Scholar 

  15. Blanton WB, Gordon-Wylei SW, Clark GR, Jordon KD, Wood JT, Gêiser U, Collins TJ. Synthesis and crystallographic characterization of an octameric water complex, (H2O)8. J Am Chem Soc, 1999, 121: 3551–3552

    Article  CAS  Google Scholar 

  16. Atwood JL, Barbour LJ, Ness TJ, Raston CL, Raston PL. A well-resolved ice-like (H2O)8 cluster in an organic supramolecular complex. J Am Chem Soc, 2001, 123: 7192–7193

    Article  CAS  Google Scholar 

  17. Zhao B, Cheng P, Chen XY, Cheng C, Shi W, Liao DZ, Yan SP, Jiang ZH. Design and synthesis of 3d-4f metal-based zeolite-type materials with a 3D nanotubular structure encapsulated “water” pipe. J Am Chem Soc, 2004, 126: 3012–3013

    Article  CAS  Google Scholar 

  18. Liao YC, Jiang YC, Wang SL. Discrete water hexamers and template-assisted molecular recognition in an elastic zincophosphate lattice. J Am Chem Soc, 2005, 127: 12794–12795

    Article  CAS  Google Scholar 

  19. Dai FN, He HY, Sun DF. A metal-organic nanotube exhibiting reversible adsorption of (H2O)12 cluster. J Am Chem Soc, 2008, 130: 14064–14065

    Article  CAS  Google Scholar 

  20. Cao ML, Wu JJ, Mo HJ, Ye BH. Template trapping and crystal structure of the magic number (H2O)21 cluster in the tetrahedral hole of a nanoscale global ion packed in a face-centered cubic pattern. J Am Chem Soc, 2009, 131: 3458–3459

    Article  CAS  Google Scholar 

  21. Wei ML, He C, Hua WJ, Duan CY, Li SH, Meng QJ. A large protonated water cluster H+(H2O)27 in a 3D metal-organic framework. J Am Chem Soc, 2006, 128: 13318–13319

    Article  CAS  Google Scholar 

  22. Wang Y. Okamura T, Sun WY, Ueyama N. Large (H2O)56(OH)6 and (H2O)20 clusters inside a nanometer-sized M6L8 cage constructed by five-coordinated copper(II) and flexible carboxamide-containing tripodal ligand. Cryst Growth Des, 2008, 8: 802–804

    Article  CAS  Google Scholar 

  23. Bakhoda A, Khavasi HR, Safari N. Discrete cubane-like bromide-water cluster. Cryst Growth Des, 2011, 11: 933–935

    Article  CAS  Google Scholar 

  24. Saeed MA, Wong BM, Fronczek FR, Venkatraman R, Hossain MA. Formation of an amine-water cyclic pentamer: A new type of water cluster in a polyazacryptand. Cryst Growth Des, 2010, 10: 1486–1488

    Article  CAS  Google Scholar 

  25. Butchard, JR, Curnow O J, Garrett DJ, Maclagan RGAR. Structure of a discrete dichloride hexahydrate cube as a tris(diisopropylamino)cyclopropenium salt. Angew Chem Int Ed, 2006, 45: 7550–7553

    Article  CAS  Google Scholar 

  26. Lakshminarayanan PS, Suresh E, Ghosh P. A hybrid water-chloride structure with discrete undecameric water moieties self-assembled in a heptaprotonated octaamino cryptand. Angew Chem Int Ed, 2006, 45: 3807–3811

    Article  CAS  Google Scholar 

  27. Custelcean R, Gorbunova MG. A metal-organic framework functionalized with free carboxylic acid sites and its selective binding of a Cl(H2O)4 cluster. J Am Chem Soc, 2005, 127: 16362–16363

    Article  CAS  Google Scholar 

  28. Raghuraman K, Katti KK, Barbour LJ, Pillarsetty N, Barnes CL, Katti KV. Characterization of supramolecular (H2O)18 water morphology and water-methanol (H2O)15(CH3OH)3 clusters in a novel phosphorus functionalized trimeric amino acid host. J Am Chem Soc, 2003, 125: 6955–6961

    Article  CAS  Google Scholar 

  29. Infantes L, Chisholm J, Motherwell S. Extended motifs from water and chemical functional groups in organic molecular crystals. CrystEngComm, 2003, 5: 480–486

    Article  CAS  Google Scholar 

  30. Li F, Li TH, Su W, Gao SY, Cao R. Formation of two 1D polymeric water morphologies. Eur J Inorg Chem, 2006, 1582–1587

  31. Ghosh SK, Bharadwaj PK. Puckered-boat conformation hexameric water clusters stabilized in a 2D metal-organic framework structure built from Cu(II) and 1,2,4,5-benzenetetracarboxylic acid. Inorg Chem, 2004, 43: 5180–5194

    Article  CAS  Google Scholar 

  32. López MV, Zaragoza G, Otero M, Pedrido R, Rama G, Bermejo MR. Supramolecular aggregation of Pd(II) monohelicates directed by discrete (H2O)8 clusters in a 1,4-diaxially substituted hexameric chairlike conformation. Cryst Growth Des, 2008, 8: 2083–2086

    Article  Google Scholar 

  33. Luan XJ, Chu YC, Wang YY, Li DS, Liu P, Shi QZ. Formation of two-dimensional supramolecular water layer containing (H2O)18 morphology via dianion templating. Cryst Growth Des, 2006, 6: 812–814

    Article  CAS  Google Scholar 

  34. Li F, Li TH, Yuan DQ, Lv J, Cao R. Characterization of a novel water tape containing (H2O)18 clusters. Inorg Chem Commun, 2006, 9: 691–694

    Article  CAS  Google Scholar 

  35. Du M, Jiang XJ, Zhao XJ. Controllable assembly of 1 3-D metal-organic supramolecular framework with the inclusion of a well-resolved 1-D water morph. Inorg Chem Commun, 2006, 9: 1199–1203

    Article  CAS  Google Scholar 

  36. Luo GG, Xiong HB, Dai JC. Syntheses, structural characterization, and properties of {[Cu(bpp)2(H2O)2](tp)·7H2O} and {[Cu(bpp)2 H2O)](ip)·7H2O} complexes. New examples of the organic anionic template effect on induced assembly of water clusters (bpp = 1,3-Bis(4-pyridyl)propane, tp = terephthalate, ip = isophthate). Cryst Growth Des, 2011, 11: 507–513

    Article  CAS  Google Scholar 

  37. Luo GG, Xiong HB, Sun D, Wu DL, Huang RB, Dai JC. A discrete spirocyclic (H2O)9 cluster and 1D novel water chain with tetrameric and octameric clusters in cationic hosts. Cryst Growth Des, 2011, 11: 1948–1956

    Article  CAS  Google Scholar 

  38. Hu NH, Li ZG, Xu JW, Jia HQ, Niu JJ. Self-assembly of a water chain with tetrameric and decameric clusters in the channel of a mixed-valence CuICuII complex. Cryst Growth Des, 2007, 7: 15–17

    Article  CAS  Google Scholar 

  39. Higashi T. ABSCOR. Empirical Absorption Correction based on Fourier Series Approximation. Tokyo: Rigaku Corporation, 1995

    Google Scholar 

  40. Sheldrick GM. SHELXS-97. Program for X-ray Crystal Structure Determination. University of Göttingen, Germany, 1997

    Google Scholar 

  41. Sheldrick GM. SHELXL-97. Program for X-ray Crystal Structure Refinement. University of Göttingen, Germany, 1997

    Google Scholar 

  42. Spek AL. Implemented as the PLATON Procedure, a Multipurpose Crystallographic Tool. The Netherlands: Utrecht University, Ultrecht, 1998

    Google Scholar 

  43. Brandenburg K. DIAMOND, Version 3.1f. Crystal Impact GbR, Bonn, Germany

  44. Rueff JM, Pillet S, Claiser N, Bonaventure G, Souhassou M, Rabu P. Synthesis, crystal structure and magnetic properties of the helical-chain compounds [M2(O2CC12H8CO2)2(H2O)8] [M = Cobalt(II), Nickel(II)]. Eur J Inorg Chem, 2002, 895–900

  45. Kumagai H, Inoue K, Kurmoo M. Self-organized metallo-helicates and -ladder with 2,2′-biphenyldicarboxylate (C14H8O4)2−: Synthesis, crystal structures and magnetic properties. Bull Chem Soc Jpn, 2002, 75: 1283–1289

    Article  CAS  Google Scholar 

  46. Lu JY, Schauss V. A novel double-helical-chain coordination polymer constructed from 2,2′-biphenyldicarboxylate-linked binuclear-copper motif. Inorg Chem Commun, 2003, 6: 1332–1334

    Article  CAS  Google Scholar 

  47. Wang RH, Han L, Sun YQ, Gong YQ, Yuan DQ, Hong MC. A two-dimensional copper(II) coordination polymer comprising discrete left- and right-handed helical chains. J Mol Struct, 2004, 694: 79–83

    Article  CAS  Google Scholar 

  48. Wang RH, Zhou YF, Sun YQ, Yuan DQ, Han L, Lou BY, Wu BL, Hong MC. Syntheses and crystal structures of copper(II) coordination polymers comprising discrete helical chains. Cryst Growth Des, 2005, 5: 251–256

    Article  Google Scholar 

  49. Carlucci L, Ciani G, Proserpio DM, Rizzato S. New polymeric networks from the self-assembly of silver(I) salts and the flexible ligand 1,3-bis(4-pyridyl)propane (bpp). A systematic investigation of the effects of the counterions and a survey of the coordination polymers based on bpp. CrystEngComm, 2002, 4: 121–129

    Article  CAS  Google Scholar 

  50. Luo GG, Huang RB, Zhang N, Lin LR, Zheng LS. Structural diversity in the (Ag-NO3-2-aminopyrimidyl derivatives) system: New zero-, one- and two-dimensional inorganic-organic hybrids. Polyhedron, 2008, 27: 3231–3238

    Article  CAS  Google Scholar 

  51. Sun D, Luo GG, Zhang N, Xu QJ, Huang RB, Zheng LS. Syntheses, structures, photoluminescence of silver(I) coordination polymers with 2-aminopyrazine and varied dicarboxylate ligands. Polyhedron, 2010, 29: 1243–1250

    Article  CAS  Google Scholar 

  52. Yang E, Zhang J, Li ZJ, Gao S, Kang Y, Chen YB, Wen YH, Yao YG. Interweaving 3D network with double helical tubes filled by 1D coordination polymer chains. Inorg Chem, 2004, 43: 6525–6527

    Article  CAS  Google Scholar 

  53. Barbour LJ, Orr GW, Atwood JL. An intermolecular (H2O)10 cluster in a solid-state supramolecular complex. Nature, 1998, 393: 671–673

    Article  CAS  Google Scholar 

  54. Barbour LJ, Orr GW, Atwood JL. Characterization of a well resolved supramolecular ice-like (H2O)10 cluster in the solid state. Chem Commun, 2000, 859–860

  55. Matsumoto M, Saito S, Ohmine I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature, 2002, 416: 409–413

    Article  CAS  Google Scholar 

  56. Custalcean R, Afloroaiei C, Vlassa M, Polverejan M. Formation of extended tapes of cyclic water hexamer in an organic molecular crystal host. Angew Chem Int Ed, 2000, 39: 3094–3096

    Article  Google Scholar 

  57. Gregory JK, Clary DC. Structure of water clusters. The contribution of many-body forces, monomer relaxation, and vibrational zero-point energy. J Phys Chem, 1996, 100: 18014–18022

    CAS  Google Scholar 

  58. Maheshwary S, Patel N, Sathyamurthy N, Kulkarni AD, Gadre SR. Structure and stability of water clusters (H2O)n, n = 8–20: An ab initio investigation. J Phys Chem A, 2001, 105: 10525–10537

    Article  CAS  Google Scholar 

  59. Prasad TK, Rajasekharan MV. A novel water octamer in Ce(dipic)2(H2O)3·4H2O: Crystallographic, thermal, and theoretical studies. Cryst Growth Des, 2006, 6: 488–491

    Article  CAS  Google Scholar 

  60. Deshpande MS, Kumbhar AS, Puranik VG, Selvaraj K. Supramolecular self-assembled ruthenium-polypyridyl framework encapsulating discrete water cluster. Cryst Growth Des, 2006, 6: 743–748

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to GengGeng Luo or JingCao Dai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, G., Wu, D., Liu, L. et al. A hybrid carboxylate-water decamer with a discrete octameric water moiety self-assembled in a 2D copper(II) coordination polymer. Sci. China Chem. 55, 1213–1219 (2012). https://doi.org/10.1007/s11426-012-4492-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4492-2

Keywords

Navigation