Skip to main content
Log in

A facile hydrothermal preparation and photoluminescence study of ZnO micro/nanostructures on Zn foils

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

ZnO micro/nanostructures with various morphologies were grown via hydrothermal etching of Zn foil. Controlling the reaction temperature and time, rod-like, pencil-like, tube-like and flowerlike ZnO micro/nanostructures could be prepared directly on the Zn foil surface at temperatures 100–180 °C with excellent reproducibility. X-ray diffraction patterns indicated that these ZnO micro/nanostructures were hexagonal. Possible mechanisms for the variation of morphology are discussed. Moreover, photoluminescence spectra of the as-grown samples revealed that all of them consist of UV emission band at around 392 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soh CB, Tay CB, Chua SJ, Le HQ, Ang NSS, Teng JH. Optimization of hydrothermal growth ZnO Nanorods for enhancement of light extraction from GaN blue LEDs. J Cryst Grow, 2010, 312: 1848–1854

    Article  CAS  Google Scholar 

  2. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang P. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292: 1897–1899

    Article  CAS  Google Scholar 

  3. Wang ZL, Song JH. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312: 242–246

    Article  CAS  Google Scholar 

  4. He JH, Hsin CL, Liu J, Chen LJ, Wang ZL. Piezoelectric gated diode of a single ZnO nanowire. Adv Mater, 2007, 19: 781–784

    Article  CAS  Google Scholar 

  5. Qian X, Liu H, Guo Y, Song Y, Li Y. Effect of aspect ratio on field emission properties of ZnO nanorod arrays. Nanoscale Res Lett, 2008, 3: 303–307

    Article  CAS  Google Scholar 

  6. Bansal V, Jani H, DuPlessis J, Coloe PJ, Bhargava SK. Ni-Cu composite porous nanostructures obtained by galvanic replacement reactions. Adv Mater, 2008, 20: 713–717

    Article  Google Scholar 

  7. Wu WY, Ting JM, Huang PJ. Electrospun ZnO nanowires as gas sensors for ethanol detections. Nanoscale Res Lett, 2009, 4: 513–517

    Article  CAS  Google Scholar 

  8. Wang X, Summers CJ, Wang ZL. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett, 2004, 4: 423–426.

    Article  CAS  Google Scholar 

  9. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk W Van. MnO2/Poly(3,4-ethyenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. Nat Mater, 2005, 4: 366–337

    Article  CAS  Google Scholar 

  10. Greyson EC, Babayan Y, Odom TW. Directed growth of ordered arrays of small-diameter ZnO nanowires. Adv Mater, 2004, 16: 1348–1352

    Article  CAS  Google Scholar 

  11. Fan HJ, Fleischer F, Lee W, Nielsch K, Scholz R, Zacharias M, Gösele U, Dadgar A, Krost A. Patterned growth of aligned ZnO nanowire arrays on sapphire and GaN layers. Supperlattice Microst, 2004, 36: 95–105

    Article  CAS  Google Scholar 

  12. Chik H, Liang J, Cloutier SG, Kouklin N, Xu JM. Periodic array of uniform ZnO nanorods by second-order self-assembly. Appl Phys Lett, 2004, 84: 3376–3378

    Article  CAS  Google Scholar 

  13. Pan ZW. Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science, 2001, 291: 1947–1949

    Article  CAS  Google Scholar 

  14. Guo L, Ji YL, Xu HB, Simon P, Wu ZY. Regularly shaped, single-crystallione ZnO nanorods with wurtzite structure. J Am Chem Soc, 2002, 124: 14864–14865

    Article  CAS  Google Scholar 

  15. Wei A, Sun XW, Xu CX, Dong ZL, Yang Y, Tan ST, Huang W, Growth mechanism of tubular ZnO formed in aqueous solution. Nanotechnology, 2006,17: 1740–1744

    Article  CAS  Google Scholar 

  16. Yu HD, Zhang ZP, Han MY, Hao XT, Zhu FR. ZnO nanotube ethanol gas sensor. J Am Chem Soc, 2005, 127: 2378–2379

    Article  CAS  Google Scholar 

  17. Li Y, Feng HY, Zhang N, Liu CS. Solvo-thermal synthesis and characterization of nest-like zinc oxide. Trans Nonferrous Met Soc China, 2010, 20: 119–122

    Article  CAS  Google Scholar 

  18. Gao PX, Lee JL, Zhang ZL. Multicolored ZnO nanowire architectures of trenched silicon substrates. J Phys Chem C, 2007, 111: 13763–13769

    Article  CAS  Google Scholar 

  19. Liu YM, Fang QQ, Wu MZ, Li Y, Lv QR, Zhou J, Wang BM. Structure and photoluminescence of arrayed Zn1−x CoxO nanorods grown via hydrothermal method. J Phy D Appl Phys, 2007, 40: 4592–4596

    Article  CAS  Google Scholar 

  20. Tam KH, Cheung CK, Leung YH, Djurišic AB, Ling CC, Beling CD, Fung S, Kwok WM, Chan WK, Phillips DL, Ding L, Ge WK. Defects in ZnO nanorods prepared by a hydrothermal method. J Phy Chem B, 2006, 110: 20865–20871

    Article  CAS  Google Scholar 

  21. Zhang YH, Li XJ, Zheng L, Chen QW. Nondegrading photoluminescence in porous silicon. Phys Rev Lett, 1998, 81: 1710–1713

    Article  CAS  Google Scholar 

  22. Lee SM, Cho SN, Cheon JW. Anisotropic shape control of colloidal inorganic nanocrystals. Adv Mater, 2003, 15: 441–444

    Article  CAS  Google Scholar 

  23. Ghosh KS, Tsujii K. Effect of pressure on colloidal behavior in hydrothermal water. J Phys Chem B, 2008, 112: 6906–6913

    Article  CAS  Google Scholar 

  24. Marshall WL and Frank EU. Ion product of water substance, 0-1000 °C, 1-10,000 bars, new international formulation and its background. J Phys Chem Ref Data, 1981, 10: 295–304

    Article  CAS  Google Scholar 

  25. Lioudmila ND, Dmitriy VK. Mechanism of zinc single crystal growth under hydrothermal conditions. Annu Chim Sci Mat, 2001, 26: 193–198

    Article  Google Scholar 

  26. Guo M, Diao P, Cai SM. Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. J Solid State Chem, 2005, 178: 1864–1873

    Article  CAS  Google Scholar 

  27. Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P. Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater, 2001, 13: 113–116

    Article  CAS  Google Scholar 

  28. Wu JJ,. Liu SC. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv Mater, 2002, 14: 215–218

    Article  CAS  Google Scholar 

  29. Wang YC, Leu IC, Hon MH. Effect of colloid characteristics on the fabrication of ZnO nanowire arrays by electrophoretic deposition. J Mater Chem, 2002, 12: 2439–2444

    Article  CAS  Google Scholar 

  30. Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA, Gnade BE. Mechanisms behind green photoluminescence in ZnO phosphor powders. J Appl Phys, 1996, 79: 7983–7790

    Article  CAS  Google Scholar 

  31. Hsu CL, Chang SJ, Hung HC, Lin YR, Huang CJ, Tseng YK, Chen IC. Vertical single-crystal ZnO nanowires grown on ZnO: Ga/glass templates. IEEE Trans Nanotechnol, 2005, 4: 649–654

    Article  Google Scholar 

  32. Lupan O, Chow L, Chai G.Y, Roldan B, Naitabdi A, Schulte A, Heinrich H. Nanofabrication and characterization of ZnO nanorod arrays and branched microrods by aqueous solution route and rapid thermal processing. Mater Sci Eng B, 2007, 145: 57–66

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingZai Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M., Lu, X., Liu, Y. et al. A facile hydrothermal preparation and photoluminescence study of ZnO micro/nanostructures on Zn foils. Sci. China Chem. 54, 1547–1551 (2011). https://doi.org/10.1007/s11426-011-4322-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4322-y

Keywords

Navigation