Skip to main content
Log in

Hydrothermal growth of ZnO microrods on ITO-coated glass substrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO microrods were prepared on indium tin oxide-coated glass substrate by a hydrothermal method. ZnO microrods were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscope, energy-dispersive X-ray spectrometer, photoluminescence, and UV–visible spectrum. ZnO microrods were pure wurtzite phase. The formation mechanism was discussed, especially emphasizing the formation mechanism of ZnO clusters and twinned ZnO structures. Green and orange emissions in photoluminescence were attributed to O vacancies and O interstitials, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)

    Article  ADS  Google Scholar 

  2. C.W. Litton, D.C. Reynolds, T.C. Collins (eds.), Zinc Oxide Materials for Electronic and Optoelectronic Device Application (Wiley, New Jersey, 2011)

    Google Scholar 

  3. D.C. Look, Mat. Sci. Eng. B 80, 383 (2001)

    Article  Google Scholar 

  4. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, D.H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  5. J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang, K.V. Rao, Prog. Mater Sci. 58, 874 (2013)

    Article  Google Scholar 

  6. B. Kumar, S.-W. Kim, Nano Energy 1, 342 (2012)

    Article  Google Scholar 

  7. G. Zhu, R.S. Yang, S.H. Wang, Z.L. Wang, Nano Lett. 10, 3151 (2010)

    Article  ADS  Google Scholar 

  8. R. Ahmad, N. Tripathy, D.-U.-J. Jung, Y.-B. Hahn, Chem. Commun. 50, 1890 (2014)

    Article  Google Scholar 

  9. J.Y. Park, S.-W. Choi, S.S. Kim, Nanoscale Res. Lett. 5, 353 (2010)

    Article  ADS  Google Scholar 

  10. M.-L. Zhang, F. Jin, M.-L. Zheng, J. Liu, Z.-S. Zhao, X.-M. Duan, RSC Adv. 4, 10462 (2014)

    Article  Google Scholar 

  11. H.X. Dong, Y. Liu, J. Lu, Z.H. Chen, J. Wang, L. Zhang, J. Mater. Chem. C 1, 202 (2013)

    Article  Google Scholar 

  12. J.M. Bao, M.A. Zimmler, F. Capasso, Nano Lett. 6, 1719 (2008)

    Article  ADS  Google Scholar 

  13. J. Joo, B.Y. Chow, M. Prakash, E.S. Boyden, J.M. Jacobson, Nat. Mater. 10, 596 (2011)

    Article  ADS  Google Scholar 

  14. H.M. Hu, X.H. Huang, C.H. Deng, X.Y. Chen, Y.D. Qian, Mater. Chem. Phys. 106, 58 (2007)

    Article  Google Scholar 

  15. A.-J. Cheng, Y. Tzeng, Y. Zhou, M. Park, T.-H. Wu, C. Shannon, D. Wang, W. Lee, Appl. Phys. Lett. 92, 092113 (2008)

    Article  ADS  Google Scholar 

  16. M. Chang, X.L. Cao, Z.B. Zeng, J. Phys. Chem. C113, 15544 (2009)

    Google Scholar 

  17. X.Q. Zhao, P. Klason, M. Willander, Appl. Phys. A 88, 27 (2007)

    Article  ADS  Google Scholar 

  18. I. Isakov, M. Panfilova, M.J.L. Sourribes, P.A. Warburton, Phys. Status. Solidif. C10, 1308 (2013)

    Google Scholar 

  19. P. Sundara Venkatesh, C.L. Dong, C.L. Chen, W.F. Pong, K. Asokan, K. Jeganathan, Mater. Lett. 116, 206 (2014)

    Article  Google Scholar 

  20. Y. Sun, G.M. Fuge, M.N.R. Ashfold, Chem. Phys. Lett. 396, 21 (2004)

    Article  ADS  Google Scholar 

  21. S. Yamashita, H. Watanabe, T. Shirai, M. Fuji, M. Takahashi, Adv. Powder Technol. 22, 271 (2011)

    Article  Google Scholar 

  22. R. Turgeman, O. Gershevitz, M. Deutsch, B.M. Ocko, A. Gedanken, C.N. Sukenik, Chem. Mater. 17, 5048 (2005)

    Article  Google Scholar 

  23. J.F. Lu, J.T. Li, C.X. Xu, Y. Li, J. Dai, Y.Y. Wang, Y. Lin, S.F. Wang, ACS Appl. Mater. Interfaces 6, 18301 (2014)

    Article  Google Scholar 

  24. X.D. Yan, Z.W. Li, R.Q. Chen, W. Gao, Cryst. Growth Des. 8, 2406 (2008)

    Article  Google Scholar 

  25. S. Xu, Z.L. Wang, Nano Res. 4, 1013 (2011)

    Article  Google Scholar 

  26. L. Schlur, A. Carton, P. Lévêque, D. Guillon, G. Pourroy, J. Chem. Phys. C117, 2993 (2013)

    Google Scholar 

  27. H.-H. Park, X. Zhang, K.W. Lee, K.H. Kim, S.H. Jung, D.S. Park, Y.S. Choi, H.-B. Shin, H.K. Sung, K.H. Park, H.K. Kang, H.-H. Park, C.K. Ko, Cryst. Eng. Comm. 15, 3463 (2013)

    Article  Google Scholar 

  28. Y.-H. Ni, X.-W. Wei, J.-M. Hong, Y, Ye. Mater. Sci. Eng. B 121, 42 (2005)

    Article  Google Scholar 

  29. Y.F. Hsu, Y.Y. Xi, A.B. Djurišić, W.K. Chan, Appl. Phys. Lett. 92, 133507 (2008)

    Article  ADS  Google Scholar 

  30. Y.J. Sun, L. Wang, X.G. Yu, K.Z. Chen, Cryst. Eng. Commun. 14, 3199 (2012)

    Article  Google Scholar 

  31. S.W. Bian, I.A. Mudunkotuwa, T. Rupasinghe, V.H. Grassian, Langmuir 27, 6059 (2011)

    Article  Google Scholar 

  32. P. Li, H. Liu, B. Lu, Y. Wei, J. Phys. Chem. C114, 21132 (2010)

    Google Scholar 

  33. Z.Z. Han, L. Liao, Y.T. Wu, H.B. Pan, S.F. Shen, J.Z. Chen, J. Hazard Mater. 217–218, 100 (2012)

    Article  Google Scholar 

  34. S. Cho, J.W. Jang, J.S. Lee, K.H. Lee, Langmuir 26, 14255 (2010)

    Article  Google Scholar 

  35. Z.Q. Hou, Y.X. Wang, L.H. Shen, H. Guo, G.X. Wang, Y. Li, S.F. Zhou, Q.Q. Zhang, Q. Jiang, Nanoscale Res. Lett. 7, 507 (2012)

    Article  ADS  Google Scholar 

  36. Y.M. Liu, H. Lv, S.Q. Li, G.X. Xi, X.Y. Xing, Adv. Powder Technol. 22, 784 (2011)

    Article  Google Scholar 

  37. B.G. Wang, E.W. Shi, W.Z. Zhong, Cryst. Res. Technol. 33, 937 (1998)

    Article  Google Scholar 

  38. A. van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Phys. Chem. B104, 1715 (2000)

    Article  Google Scholar 

  39. F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, G. Salviati, Sci. Rep. 4, 5158 (2014)

    ADS  Google Scholar 

  40. Q. Zhu, C.S. Xie, H.Y. Li, C.Q. Yang, S.P. Zhang, D.W. Zeng, J. Mater. Chem. C 2, 4566 (2014)

    Article  Google Scholar 

  41. J. Iqbal, B.Q. Wang, X.F. Liu, D.P. Yu, B. He, R.H. Yu, New J. Phys. 11, 063009 (2009)

    Article  ADS  Google Scholar 

  42. H.A. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, J. Appl. Phys. 105, 013502 (2009)

    Article  ADS  Google Scholar 

  43. H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, Phys. Status Solidif C1, 2550 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work is supported by the Talent Plan at Anhui University of Technology in China and NEWFELPRO in Croatia (Grant Agreement No. 13). H. H. thanks the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant NO. 14KJB140005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jincheng Fan or Hang Heng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Li, T. & Heng, H. Hydrothermal growth of ZnO microrods on ITO-coated glass substrate. Appl. Phys. A 119, 185–192 (2015). https://doi.org/10.1007/s00339-014-8946-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8946-6

Keywords

Navigation