Skip to main content
Log in

Density functional theory study on the interaction of catechin and cytosine

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The interacting patterns and mechanism of the catechin and cytosine have been investigated using the density functional theory B3LYP method with 6-31+G* basis set. Eleven stable structures of the catechin-cytosine complexes have been found respectively. The results indicate that the complexes are mainly stabilized by the hydrogen bonding interactions. Theories of atoms in molecules (AIM) and natural bond orbital (NBO) have been utilized to investigate the hydrogen bonds involved in all the systems. The interaction energies of all the complexes which were corrected for basis set superposition error (BSSE), are from −17.35 to −43.27 kJ/mol. The results show that the hydrogen bonding contributes to the interaction energies dominantly. The corresponding bonds stretching motions in all the complexes are red-shifted relative to that of the monomer, which is in good agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brant E, Billinghurst GR. Excited-state structural dynamics of cytosine from resonance Raman spectroscopy. J Phys Chem A, 2006, 110: 2353–2359

    Article  Google Scholar 

  2. Guo JB, Zhang GW, Chen XX, Wang JJ. Studies on the interaction between catechin and DNA. J Anal Sci, 2008, 24: 507–512

    CAS  Google Scholar 

  3. Liu J, Luo GA, Wang YM, Sun HW. Research development of the interaction of small molecules with nucleic acids. Acta Pharm Sinica, 2001, 36: 74–79

    CAS  Google Scholar 

  4. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL. Protein kinase inhibitors: Insights into drug design from structure. Science, 2001, 293: 876–882

    Article  CAS  Google Scholar 

  5. Zhuo L. Research progress of interactions of small molecules with DNA. J Chongqing Tech Bus Univ (Nat Sci Ed), 2005. 5: 440–445

    Google Scholar 

  6. Siavash R, Mohammad RG, Mehdi B. Theoretical investigation of interaction between Gatifloxacin and DNA: Implications for anticancer drug design. Mat Sci Eng C, 2009, 29: 1808–1813

    Article  Google Scholar 

  7. Deepa P, Kolandaivel P, Senthilkumar K. Interactions of anticancer drugs with usual and mismatch base pairs — Density functional theory studies. Biophy Chem, 2008, 136: 50–58

    Article  CAS  Google Scholar 

  8. Tarek M, El-Gogary, Gottfried K. Interaction of psoralens with DNA-bases (II): An ab initio quantum chemical, density functional theory and second-order Mler-Plesset perturbational study. J Mol Struct (THEOCHEM), 2009, 895: 57–64

    Article  Google Scholar 

  9. Lv G, Chen ZX, Zheng J, Wei FD, Jiang H, Zhang RY, Wang XM. Theoretical study of the interaction pattern and the binding affinity between procaine and DNA bases. J Mol Struct (THEOCHEM) 2009, 939: 44

    Article  Google Scholar 

  10. Yang B, Kotani A, Arai K, Kusu F. Relationship of electrochemical oxidation of catechins on their antioxidant activity in microsomal lipid peroxidation. Chem Pharm Bull, 2001, 49: 747–751

    Article  CAS  Google Scholar 

  11. Yang CS, Chung JY, Yang GU, Chhabra SK, Lee MJ. Tea and tea polyphenols in cancer prevention. J Nutr, 2000, 130: 472–478

    Google Scholar 

  12. Leanderson P, Faresjo AO, Tagesson C. Green tea polyphenols in hibit oxidant-induced DNA strand breakage in cultured lung cells. J Free Radic Biol Med, 1997, 23: 235–242

    Article  CAS  Google Scholar 

  13. McKay DL, Blumberg JB. The role of tea in human health: An update. J Nutr, 2002, 21: 1–13

    CAS  Google Scholar 

  14. Teixeira S, Siqueta C, Alvesb C. Structure-property studies on the antioxidant activity. J Free Radic Biol Med, 2005, 39: 1099–1108

    Article  CAS  Google Scholar 

  15. Fronczek FR, Gannuch G, Mattice WL, Tobiason FL, Broeker JL, Hemingwag RW. Dipole moment, solution, and solid state structure of (−)-epicatechin, a monomer unit of procyanidin polymers. J Chem Soc PerkinTrans II, 1984, 2: 1611–1616

    Article  Google Scholar 

  16. Ramos-Tejada MM, Durán DG, Ontiveros-Ortega A. Investigation of alumina/(+)-catechin system properties. Colloid Surface B: Biointerf, 2002, 24: 297–308

    Article  CAS  Google Scholar 

  17. Peng LL, Liu JL, Gou Y, Xue Y. Density functional theory study on structure and vibrational spectra of catechins. Chem Res Appl, 2008, 8: 1001–1006

    Google Scholar 

  18. Hu, F, Zhang Y, Li LL, Tian AM. Density functional theory study on hydrogen bonding interaction of catechin-(H2O)n. Chin J Chem, 2010, 28: 748

    Article  Google Scholar 

  19. Bader RWF. Atoms in Molecules: A Quantum Theory. Oxford: Oxford University Press, 1990

    Google Scholar 

  20. Reed AE, Weinhold F, Curtiss LA, Pochatko DJ. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. J Chem Phys, 1986, 84: 5687

    Article  CAS  Google Scholar 

  21. Boys SF, Bernardi F. Some procedures with reduced errors. J Mol Phys, 1970, 19: 553

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith T, Petersson G.A, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA. Gaussian 03, Revision A.7, Pittsburgh: Gaussian, Inc., 2003

    Google Scholar 

  23. Engle DW, Hattingh M, Hundt HKL. Structure and nuclear magnetic resonance spectra of 6-bromo-3,3′,4′,5,7-penta-0-methylcatechin. J Am Chem Soc Commun, 1978, 6: 95

    Google Scholar 

  24. Cox PJ, Kumarasamy Y, Nahar L, Sarker SD, Shoeb M. Luteolin. Acta Cryst E, 2003, 59: 975

    Article  Google Scholar 

  25. Popelier PLA. Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A, 1998, 102: 1873

    Article  CAS  Google Scholar 

  26. Kowalska A, Stobiecka A, Wysocki S. A computational investigation of the interactions between harmane and the functional monomers commonly used in molecular imprinting. J Mol Struct (THEOCHEM), 2009, 901: 88

    Article  CAS  Google Scholar 

  27. Mohajeri A, Nobandegani FF. Detection and evaluation of hydrogen bond strength in nucleic acid base pairs. J Phys Chem A, 2008, 112: 281

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LaiCai Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, W., Mao, S., Zhang, S. et al. Density functional theory study on the interaction of catechin and cytosine. Sci. China Chem. 54, 1094–1100 (2011). https://doi.org/10.1007/s11426-011-4300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4300-4

Keywords

Navigation