Skip to main content
Log in

Selective hydrogenation of citral over Au-based bimetallic catalysts in supercritical carbon dioxide

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Selective hydrogenation of citral was investigated over Au-based bimetallic catalysts in the environmentally benign supercritical carbon dioxide (scCO2) medium. The catalytic performances were different in citral hydrogenation when Pd or Ru was mixed (physically and chemically) with Au. Compared with the corresponding monometallic catalyst, the total conversion and the selectivity to citronellal (CAL) were significantly enhanced over TiO2 supported Pd and Au bimetallic catalysts (physically and chemically mixed); however, the conversion and selectivity did not change when Ru was physically mixed with Au catalyst compared to the monometallic Ru/TiO2, and the chemically mixed Ru-Au/TiO2 catalyst did not show any activity. The effect of CO2 pressure on the conversion of citral and product selectivity was significantly different over the Au/TiO2, Pd-Au/TiO2, and Pd/TiO2 catalysts. It was assumed to be ascribed to the difference in the interactions between Au, Pd nanoparticles and CO2 under different CO2 pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leitner W. Supercritical carbon dioxide as a green reaction medium for catalysis. Acc Chem Res, 2002, 35: 746–756

    Article  CAS  Google Scholar 

  2. Jessop PG, Ikariya T, Noyori R. Homogeneous catalysis in supercritical fluids. Chem Rev, 1999, 99: 475–493

    Article  CAS  Google Scholar 

  3. Baiker A. Supercritical fluids in heterogeneous catalysis. Chem Rev, 1999, 99: 453–473

    Article  CAS  Google Scholar 

  4. Zhao F, Fujita S, Akihara S, Arai M. Hydrogenation of benzaldehyde and cinnamaldehyde in compressed CO2 medium with a Pt/C catalyst: A study on molecular interactions and pressure effects. J Phys Chem A, 2005, 109: 4419–4424

    Article  CAS  Google Scholar 

  5. Nelson MR, Brokman RF. Ab initio calculations on CO2 binding to carbonyl groups. J Phys Chem A, 1998, 102: 7860–7863

    Article  CAS  Google Scholar 

  6. Raveendran P, Wallen SL. Cooperative C…H…O hydrogen bonding in CO2 Lewis Base complexes: Implications for solvation in supercritical CO2. J Am Chem Soc, 2002, 124: 12590–2599

    Article  CAS  Google Scholar 

  7. Milone C, Ingoglia R, Pistone A, Neri G, Frusteri F, Galvagno S. Selective hydrogenation of α,β-unsaturated ketones to α,β-unsaturated alcohols on gold-supported catalysts. J Catal, 2004, 222: 348–356

    Article  CAS  Google Scholar 

  8. Mohr C, Hofmeister H, Radnik J, Claus P. Identification of active sites in gold-catalyzed hydrogenation of acrolein. J Am Chem Soc, 2003, 125: 1905–1911

    Article  CAS  Google Scholar 

  9. Okumura M, Akita T, Haruta M. Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts. Catal Today, 2002, 74: 265–269

    Article  CAS  Google Scholar 

  10. Pawelec B, Venezia AM, La Parola V, Cano-Serrano E, Campos-Martin JM, Fierro JLG. AuPd alloy formation in Au-Pd/Al2O3 catalysts and its role on aromatics hydrogenation. Appl Surf Sci, 2005, 242: 380–391

    Article  CAS  Google Scholar 

  11. Li XL, Li BZ, Cheng MH, Du YK, Wang XM, Yang P. Catalytic hydrogenation of phenyl aldehydes using bimetallic Pt/Pd and Pt/Au nanoparticles stabilized by cubic silsesquioxanes. J Mol Catal A, 2008, 284: 1–7

    Article  CAS  Google Scholar 

  12. Pawelec B, Venezia AM, La Parola V, Thomas S, Fierro JLG. Factors influencing selectivity in naphthalene hydrogenation over Auand Pt-Au-supported catalysts. Appl Catal A, 2005, 283: 165–175

    Article  CAS  Google Scholar 

  13. Claus P. Heterogeneously catalyzed hydrogenation using gold catalysts. Appl Catal A, 2005, 291: 222–229

    Article  CAS  Google Scholar 

  14. Hammer B, Norskov JK. Why gold is the noblest of all the metals. Nature, 1995, 376: 238–240

    Article  CAS  Google Scholar 

  15. Zanella R, Louis C, Giorgio S, Touroude R. Crotonaldehyde hydrogenation by gold supported on TiO2: Structure sensitivity and mechanism. J Catal, 2004, 223: 328–339

    Article  CAS  Google Scholar 

  16. Liu F, Wechsler D, Zhang P. Alloy-structure-dependent electronic behavior and surface properties of Au-Pd nanoparticles. Chem Phys Lett, 2008, 461: 254–259

    Article  CAS  Google Scholar 

  17. Cardenas-Lizana F, Gomez-Quero S, Keane M. Gas phase hydrogenation of m-dinitrobenzene over alumina supported Au and Au-Ni alloy. Catal Lett, 2009, 127: 25–32

    Article  CAS  Google Scholar 

  18. Pawelec B, Cano-Serrano E, Campos-Martin JM, Navarro RM, Thomas S, Fierro JLG. Deep aromatics hydrogenation in the presence of DBT over Au-Pd/gamma-alumina catalysts. Appl Catal A, 2004, 275: 127–139

    Article  CAS  Google Scholar 

  19. Venezia AM, La Parola V, Pawelec B, Fierro JLG. Hydrogenation of aromatics over Au-Pd/SiO2-Al2O3 catalysts; Support acidity effect. Appl Catal A, 2004, 264: 43–51

    Article  CAS  Google Scholar 

  20. Sarkany A, Geszti O, Safran G. Preparation of Pd-shell-Au-core/SiO2 catalyst and catalytic activity for acetylene hydrogenation. Appl Catal 0A, 2008, 350: 157–163

    Article  CAS  Google Scholar 

  21. Sarkany A, Hargittai P, Horvath A. Controlled synthesis of PDDA stabilized Au-Pd bimetallic nanostructures and their activity in hydrogenation of acetylene. Top Catal, 2007, 46: 121–128

    Article  CAS  Google Scholar 

  22. Malinowski A. Hydrodechlorination of dichlorodifluoromethane (CFC-12) on silica-supported palladium and palladium-gold catalysts. Pol J Chem, 2002, 76: 1461–1466

    CAS  Google Scholar 

  23. Bonarowska M, Pielaszek J, Semikolenov VA, Karpinski Z. Pd-Au/Sibunit carbon catalysts: Characterization and catalytic activity in hydrodechlorination of dichlorodifluoromethane (CFC-12). J Catal, 2002, 209: 528–538

    Article  CAS  Google Scholar 

  24. Nutt MO, Heck KN, Alvarez P, Wong MS. Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Appl Catal B, 2006, 69: 115–125

    Article  CAS  Google Scholar 

  25. Venezia AM, La Parola V, Deganello G, Pawelec B, Fierro JLG. Synergetic effect of gold in Au/Pd catalysts during hydrodesulfurization reactions of model compounds. J Catal, 2003, 215: 317–325

    Article  CAS  Google Scholar 

  26. Sarkany A, Horvath A, Beck A. Hydrogenation of acetylene over low loaded Pd and Pd-Au/SiO2 catalysts. Appl Catal A, 2002, 229: 117–125

    Article  CAS  Google Scholar 

  27. Liu R, Yu Y, Yoshida K, Li G, Jiang H, Zhang M, Zhao F, Fujita S, Arai M. Physically and chemically mixed TiO2-supported Pd and Au catalysts: unexpected synergistic effects on selective hydrogenation of citral in supercritical CO2. J Catal, 2010, 269: 191–200

    Article  CAS  Google Scholar 

  28. Hao J, Xi C, Cheng H, Liu R, Cai S, Arai M, Zhao F. Influence of compressed carbon dioxide on hydrogenation reactions in cyclohexane with a Pd/C catalyst. Ind Eng Chem Res, 2008, 47: 6796–6800

    Article  CAS  Google Scholar 

  29. Schwank J. Gold in bimetallic catalysts. Gold Bull, 1985, 18: 2–10

    CAS  Google Scholar 

  30. Milone C, Tropeano ML, Gulino G, Neri G, Ingoglia R, Galvagno S. Selective liquid phase hydrogenation of citral on Au/Fe2O3 catalysts. Chem Commun, 2002, 868–869

  31. Liu R, Zhao F, Fujita S, Arai M. Selective hydrogenation of citral with transition metal complexes in supercritical carbon dioxide. Appl Catal A, 2007, 316: 127–133

    Article  CAS  Google Scholar 

  32. Liu R, Wu C, Wang Q, Ming J, Hao Y, Yu Y, Zhao F. Selective hydrogenation of citral catalyzed with palladium nanoparticles in CO2-in-water emulsion. Green Chem, 2009, 11: 979–985

    Article  CAS  Google Scholar 

  33. Zhao F, Ikushima Y, Shirai M, Ebina T, Arai M. Influence of electronic state and dispersion of supported platinum particles on the conversion and selectivity of selective hydrogenation of α,β-unsaturated aldehyde in supercritical carbon dioxide. J Mol Catal A, 2002, 180: 259–265

    Article  CAS  Google Scholar 

  34. Arai M, Nishiyama Y, Ikushima Y. Optical absorption of fine gold particles in supercritical carbon dioxide for the characterization of solvent properties. J Supercrit Fluid, 1998, 13: 149–153

    Article  CAS  Google Scholar 

  35. Bhanage BM, Ikushima Y, Shirai M, Arai M. The selective formation of unsaturated alcohols by hydrogenation of α,β-unsaturated aldehydes in supercritical carbon dioxide using unpromoted Pt/Al2O3 catalyst. Catal Lett, 1999, 62: 175–177

    Article  CAS  Google Scholar 

  36. Zhao F, Ikushima Y, Shirai M, Ebina T, Arai M. Influence of electronic state and dispersion of supported platinum particles on the conversion and selectivity of selective hydrogenation of α,β-unsaturated aldehyde in supercritical carbon dioxide. J Mol Catal A, 2002, 180: 259–265

    Article  CAS  Google Scholar 

  37. Meric P, Yu KMK, Kong ATS, Tsang SC. Pressure-dependent product distribution of citral hydrogenation over micelle-hosted Pd and Ru nanoparticles in supercritical carbon dioxide. J Catal, 2006, 237: 330–336

    Article  CAS  Google Scholar 

  38. Poliakoff M, Howdle S. Supercritical chemistry: Synthesis with a spanner. Chem Ber, 1995, 31: 118–121

    CAS  Google Scholar 

  39. Hiyoshi NV. Rode C, Sato O, Tetsuka H, Shirai M. Stereoselective hydrogenation of tert-butylphenols over charcoal-supported rhodium catalyst in supercritical carbon dioxide solvent. J Catal, 2007, 252: 57–68

    Article  CAS  Google Scholar 

  40. Hiyoshi N, Inoue TV. Rode C, Sato O, Shirai M. Tuning cis-decalin selectivity in naphthalene hydrogenation over carbon-supported rhodium catalyst under supercritical carbon dioxide. Catal Lett, 2006, 106: 133–138

    Article  CAS  Google Scholar 

  41. Hiyoshi N, Mine EV, Rode C, Sato O, Shirai M. Stereoselective hydrogenation of tetralin to cis-decalin over a carbon-supported rhodium catalyst in supercritical carbon dioxide solvent. Chem Lett, 2006, 35: 188–189

    Article  CAS  Google Scholar 

  42. Hiyoshi N, Mine EV, Rode C, Sato O, Shirai M. Low temperature hydrogenation of tetralin over supported rhodium catalysts in supercritical carbon dioxide solvent. Appl Catal A, 2006, 310: 194–198

    Article  CAS  Google Scholar 

  43. Chatterjee M, Kawanami H, Sato M, Chatterjee A, Yokoyama T, Suzuki T. Hydrogenation of phenol in supercritical carbon dioxide catalyzed by palladium supported on Al-MCM-41: A facile route for one-pot cyclohexanone formation. Adv Synth Catal, 2009, 351: 1912–1924

    Article  CAS  Google Scholar 

  44. Ichikawa S, Tada M, Iwasawab Y, Ikariya T. The role of carbon dioxide in chemoselective hydrogenation of halonitroaromatics over supported noble metal catalysts in supercritical carbon dioxide. Chem Commun, 2005, 924–926

  45. Liu H, Jiang T, Han B, Liang S, Zhou Y. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst. Science, 2009, 326: 1250–1252

    Article  CAS  Google Scholar 

  46. Augustine RL. Dekker Inc M, New York, 1996

  47. Chatterjee M, Chatterjee A, Ikushima Y. Pd-catalyzed completely selective hydrogenation of conjugated and isolated C=C of citral (3,7-dimethyl-2,6-octadienal) in supercritical carbon dioxide. Green Chem, 2004, 6: 114–118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FengYu Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R., Zhao, F. Selective hydrogenation of citral over Au-based bimetallic catalysts in supercritical carbon dioxide. Sci. China Chem. 53, 1571–1577 (2010). https://doi.org/10.1007/s11426-010-3205-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3205-y

Keywords

Navigation