Skip to main content
Log in

Biomimetic synthesis of calcium-strontium apatite hollow nanospheres

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this work, calcium-strontium apatite (Sr-HA) hollow nanospheres were synthesized by a facile biomimetic method. The structure and property of Sr-HA were characterized by FESEM, TEM, HRTEM, XRD and FT-IR spectroscopy. The influences of different ratios of calcium and strontium on the morphologies of the Sr-HA products were investigated. The experimental results revealed that the hollow spherical Sr-HA, with a size of 30–120 nm in diameter, could be synthesized when the molar ratio of Ca/Sr was 1:1. The possible formation mechanism of the hollow Sr-HA was proposed. The drug release experiments indicated that the hollow spherical Sr-HA had the property of sustained release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrei S, Shafiul C, Peserai C, Vinoy T. Hydroxyapatite nanoparticle loaded collagen fiber composites: Microarchitecture and nanoindentation study. J Biomed Mater Res A, 2008, 86: 873–882

    Google Scholar 

  2. Yang P, Quan Z, Li C, Kang X, Lian H, Lin J. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials, 2008, 29: 4341–4347

    Article  CAS  Google Scholar 

  3. Vladimir SK, Serguei MB, Elena VK. A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release. Biomaterials, 2002, 23: 3449–3454

    Article  Google Scholar 

  4. Chang MC, Ko CC, Douglas WH. Conformational change of hydroxyapatite/gelatin nanocomposite by glutaraldehyde. Biomaterials, 2003, 24: 3087–3094

    Article  CAS  Google Scholar 

  5. Wu C, Sassa K, Iwai K, Asai S. Unidirectionally oriented hydroxyapatite/collagen composite fabricated by using a high magnetic field. Mater Lett, 2007, 61: 1567–1571

    Article  CAS  Google Scholar 

  6. Monkawa A, Ikoma T, Yunoki S, Ohta K, Tanaka J. A dewetting process to nano-pattern collagen on hydroxyapatite. Mater Lett, 2006, 60: 3647–3650

    Article  CAS  Google Scholar 

  7. Chen W Huang Z, Liu Y, He Q. Preparation and characterization of a novel solid base catalyst hydroxyapatite loaded with strontium. Catal Commun, 2008, 9: 516–521

    Article  CAS  Google Scholar 

  8. O’Donnell MD, Fredholm Y, Rouffignac A, Hill RG. Structural analysis of a series of strontium-substituted apatites. Acta Biomater, 2008, 4: 1455–1464

    Article  CAS  Google Scholar 

  9. Elena L, Anna T, Giancarlo C, Simone S, Monica S, Giandomenico L. Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater, 2007, 3: 961–969

    Article  CAS  Google Scholar 

  10. Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P. Incorporation and distribution of strontium in bone. Bone, 2001, 28: 446–453

    Article  CAS  Google Scholar 

  11. Marie JP, Ammann P, Boivin G, Rey C. Mechanisms of action and therapeutic potential of strontium in bone. Calcifed Tissue Int, 2001, 69: 121–129

    Article  CAS  Google Scholar 

  12. Guo D, Xu K, Zhao X, Han Y. Development of a strontium-containing hydroxyapatite bone cement. Biomaterials, 2005, 26: 4073–4083

    Article  CAS  Google Scholar 

  13. Elena L, Simone S, Monica S, Giancarlo C, Anna T. Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications. Acta Biomaterialia, 2008, 4: 656–663

    Article  CAS  Google Scholar 

  14. Bigi A, Elisa B, Chiara C, Massimo G. Strontium-substituted hydroxyapatite nanocrystals. Inorganica Chim Acta, 2007, 360(3): 1009–1016

    Article  CAS  Google Scholar 

  15. Nielsen PS. The biological role of strontium. Bone, 2004, 35: 583–588

    Article  CAS  Google Scholar 

  16. Ni GX, Choy YS, Lu WW, Ngan AHW, Chiu KY, Li ZY, Tang B, Luk KDK. Nano-mechanics of bone and bioactive bone cement interfaces in a load-bearing model. Biomaterials, 2006, 27: 1963–1970

    Article  CAS  Google Scholar 

  17. Rusu VM, Ng CH, Wilke M, Tiersch B, Fratzl P, Peter MG. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials, 2005, 26: 5414–5426

    Article  CAS  Google Scholar 

  18. Shigeru S, Tomotaka S, Daisaku M, Toshihiro M, Hiromu H. Enhancement of the catalytic activities in propane oxidation and H-D exchangeability of hydroxyl groups by the incorporation with cobalt into strontium hydroxyapatite. J Catal, 2003, 214: 8–14

    Article  CAS  Google Scholar 

  19. Ni GX, Lu WW, Xu B, Chiu KY, Yang C, Li ZY, Lam WM, Luk KDK. Interfacial behaviour of strontium-containing hydroxyapatite cement with cancellous and cortical bone. Biomaterials, 2006, 27: 5127–5133

    Article  CAS  Google Scholar 

  20. Ni GX, Chiu KY, Lu WW, Wang Y, Zhang YG, Hao LB, Li ZY, Lam WM, Lu SB, Luk KDK. Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty. Biomaterials, 2006, 27: 4348–4355

    Article  CAS  Google Scholar 

  21. Bigi A, Falini G, Gazzano M, Roveri N, Tedesco E. Structural refinements of struontium substitured hydroxyapatites. Mater Sci Forum, 1998, 278–81: 814–819

    Article  Google Scholar 

  22. Chen QZ, Wong CT, Lu WW, Cheung KM, Leong JC, Luk KD. Strengthening mechanisms of bone bonding to crystalline hydroxyapatite in vivo. Biomaterials, 2004, 25: 4243–4254

    Article  CAS  Google Scholar 

  23. Cazalbou S, Combes C, Rey C. Biomimetic approach for strontium-containing Ca-P bioceramics with enhanced biological activity. Key Eng Mat, 2001, 192–195: 147–150

    Article  Google Scholar 

  24. Verberckmoes SC, Behets GJ, Oste L, Bervoets AR, Lamberts LV, Drakopoulos M, Somogyi A, Cool P, Dorriné W, De Broe ME, D’Haese PC. Effects of strontium on the physicochemical characteristics of hydroxyapatite. Calcifed Tissue Int, 2004, 75: 405–415

    Article  CAS  Google Scholar 

  25. Li YW, Leong JCY, Lu WW, Luk KDK, Cheung KMC, Chiu KY. A novel injectable bioactive bone cement for spinal surgery: A developmental and preclinical study. J Biomed Mater Res, 2000, 52: 164–170

    Article  CAS  Google Scholar 

  26. Li YZ, Kunitake T, Fujikawa S. Efficient fabrication and enhanced photocatalytic activities of 3D-Ordered films of Titania hollow spheres. J Phys Chem B, 2006, 110: 13000–13004

    Article  CAS  Google Scholar 

  27. Lee JH. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sensor Actuat B, 2009, 140: 319–336

    Article  CAS  Google Scholar 

  28. Deng ZW, Chen M, Zhou SX, You B, Wu LM. A novel method for the fabrication of monodisperse hollow Silica spheres. Langmuir, 2006, 22: 6403–6407

    Article  CAS  Google Scholar 

  29. Peter C, Cordt Z, Lenka M, Frank AM, Peter G. Biomimetic mineralisation of apatites on Ca2+ activated cellulose templates. Mater Sci Eng C, 2007, 27: 1–7

    Article  CAS  Google Scholar 

  30. Song D, Zhang XJ, Jiang W, Yuan Y, Liu Y, Li FS. Controllable fabrication of monodisperse Co-B hollow microspheres. Mater Lett, 2008, 62: 4371–4373

    Article  CAS  Google Scholar 

  31. Zhai Y, Cui FZ, Wang Y. Formation of nano-hydroxyapatite on recombinant human-like collagen fibrils. Curr Appl Phys, 2005, 5: 429–432

    Article  Google Scholar 

  32. Wang Y, Yang C, Chen X, Zhao N. Biomimetic formation of hydroxyapatite/collagen matrix composite. Adv Eng Mater, 2006, 8: 97–100

    Article  CAS  Google Scholar 

  33. Chang MC, Ko CC, Douglas WH. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials, 2003, 24: 2853–2862

    Article  CAS  Google Scholar 

  34. Manuel AM, Catarina S, Maria MA, Maria EV. Hydroxyapatite micro- and nanoparticles: Nucleation and growth mechanisms in the presence of citrate species. J Coll Inter Sci, 2008, 318:210–216

    Article  CAS  Google Scholar 

  35. Teng S, Shi J, Peng B, Chen L. Formation of calcium phosphates in gelatin with a novel diffusion system. Colloid Surface B, 2006, 49: 87–92

    Article  CAS  Google Scholar 

  36. Fomin A, Barinov S, Ievlev V, Fadeeva I, Komlev V, Belonogov E, Turaeva T. Nanosized hydroxyapatite synthesized by precipitation in a gelatin solution. Dokl Chem, 2006, 411: 219–222

    Article  CAS  Google Scholar 

  37. Luciana PB, Aránzazu C, Joachim B, Fritz A. Heterogeneous nucleation of ZnO using gelatin as the organic matrix. Chem Mater, 2006, 18: 2016–2020

    Article  CAS  Google Scholar 

  38. Barbara P, Michele I, Mariarita L, Nicola M, Giovanni N, Claudia LB, Dominic W, Stephen M, Norberto R. Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater, 2007, 17: 2180–2188

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangSheng Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, Y., Han, D., Gu, F. et al. Biomimetic synthesis of calcium-strontium apatite hollow nanospheres. Sci. China Chem. 53, 1723–1727 (2010). https://doi.org/10.1007/s11426-010-3171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3171-4

Keywords

Navigation