Skip to main content
Log in

Novel Mesoporous Cationic Substituted Hydroxyapatite Particles for Multipurpose Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This report compares the properties of mono-substituted hierarchically assembled nanostructured apatitic (HANA) particles. The Mg2+ and Si2+ ions (1%wt) were individually substituted into an apatitic structure and produced MgHAP and SiHAP HANA particles, respectively. Besides comprehensive characterization, particles were systematically tested for their in-vitro ionic dissolution and drug-carrying abilities. Both MgHAP and SiHAP nanopowders exhibited monolithic apatitic structure, novel spherical morphology having substituted elements, mesoporous with large surface area and pore volume, and high thermal stability. Furthermore, both particles exhibited superior in-vitro bioactivity. In addition, SiHAP nanoparticles exhibited superior drug loading and sustained drug release characteristics over MgHAP particles. Thus, this study explored the potentials of novel ion-substituted HANA particles, suitable for multipurpose therapeutic applications, including tissue regeneration and drug-carrying agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.P. Singh, J.P. Singh, A. Pal, T. Kaur, J. Drug Deliv. Sci. Technol. 55, 101441 (2020)

    Article  CAS  Google Scholar 

  2. Z. Stojanovic, L. Veselinovic, S. Markovic, N. Ignjatovic, D. Uskokovic, Mater. Manuf. Process. 24, 1096–1103 (2009)

    Article  CAS  Google Scholar 

  3. F. Mohandes, M. Salavati-Niasari, M. Fathi, Z. Fereshteh, Mater. Sci. Eng. C 45, 29–36 (2014)

    Article  CAS  Google Scholar 

  4. Y. Duan, S. Zhou, Z. Chen, J. Luo, M. Zhang, F. Wang, T. Xu, C. Wang, Catal. Sci. Technol. 8, 1395–1403 (2018)

    Article  CAS  Google Scholar 

  5. M. Gao, W. Wang, H. Yang, B.C. Ye, Microporous Mesoporous Mater. 289, 109620 (2019)

    Article  CAS  Google Scholar 

  6. L. Chen, J.M. Mccrate, J.C. Lee, H. Li, Nanotechnology 22, 105708 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  7. R. Detsch, D. Hagmeyer, M. Neumann, S. Schaefer, A. Vortkamp, M. Wuelling, G. Ziegler, M. Epple, Acta Biomater. 6, 3223–3233 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. I.I. Slowing, B.G. Trewyn, S. Giri, V.Y. Lin, Adv. Funct. Mater. 17, 1225–1236 (2007)

    Article  CAS  Google Scholar 

  9. R.P. Singh, J.P. Singh, C. Singh, T. Kaur, A. Pal, Ceram. Int. 46, 12156–12164 (2020)

    Article  CAS  Google Scholar 

  10. M. Akram, A.Z. Alshemary, Y.F. Goh, W.A.W. Ibrahim, H.O. Lintang, R. Hussain, Mater. Sci. Eng. C 56, 356–362 (2015)

    Article  CAS  Google Scholar 

  11. J. Moeller-Siegert, J. Parmentier, K. Anselme, C. Vix-Guterl, J. Mater. Sci. 48, 3722–3730 (2013)

    Article  CAS  Google Scholar 

  12. T. Liu, D. Lai, X. Feng, H. Zhu, J. Chen, Ceram. Int. 39, 3947–3956 (2013)

    Article  CAS  Google Scholar 

  13. H.C. Shum, A. Bandyopadhyay, S. Bose, D.A. Weitz, Chem. Mater. 21, 5548–5555 (2009)

    Article  CAS  Google Scholar 

  14. G. Verma, K.C. Barick, N. Manoj, A.K. Sahu, P.A. Hassan, Ceram. Int. 39, 8995–9002 (2013)

    Article  CAS  Google Scholar 

  15. S.E. New, E. Aikawa, Arterioscler. Thromb. Vasc. Biol. 33, 1753–1758 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. X. Cheng, Z. Huang, J. Li, Y. Liu, C. Chen, R.A. Chi, Y. Hu, Cryst. Growth Des. 10, 1180–1188 (2010)

    Article  CAS  Google Scholar 

  17. X. Xie, K. Hu, D. Fang, L. Shang, S.D. Tran, M. Cerruti, Nanoscale 7, 7992–8002 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. Y.C. Chiang, H.P. Lin, H.H. Chang, Y.W. Cheng, H.Y. Tang, W.C. Yen, P.Y. Lin, K.W. Chang, C.P. Lin, ACS Nano 8, 12502–12513 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. C. Zhang, J. Yang, Z. Quan, P. Yang, C. Li, Z. Hou, J. Lin, Cryst. Growth Des. 9, 2725–2733 (2009)

    Article  CAS  Google Scholar 

  20. M.G. Ma, J.F. Zhu, Eur. J. Inorg. Chem. 2009, 5522–5526 (2009)

    Article  Google Scholar 

  21. L. Songnan, J.W.X. Jing, Q. Liu, J. Saba, T. Mann, M. Zhang, H. Wei, R. Chen, L. Liu, J. Am. Ceram. Soc. 95, 3377–3379 (2012)

    Article  Google Scholar 

  22. H. Yang, L. Hao, C. Du, Y. Wang, RSC Adv. 3, 23184–23189 (2013)

    Article  CAS  Google Scholar 

  23. H. Yang, H. Zeng, L. Hao, N. Zhao, C. Du, H. Liao, Y. Wang, J. Mater. Chem. B 2, 4703–4710 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. T. Kokubo, F. Miyaji, H.M. Kim, T. Nakamura, J. Am. Ceram. Soc. 79(4), 1127–1129 (1996)

    Article  CAS  Google Scholar 

  25. M. Bricha, Y. Belmamouni, E.M. Essassi, J.M. Ferreira, K. El Mabrouk, J. Biomater. Tissue Eng. 3(5), 570–580 (2013)

    Article  CAS  Google Scholar 

  26. L.A. Rasskazova, I.V. Zhuk, N.M. Korotchenko, A.S. Brichkov, Y.W. Chen, E.A. Paukshtis, V.K. Ivanov, I.A. Kurzina, V.V. Kozik, Sci. Rep. 9(1), 1–10 (2019)

    Article  CAS  Google Scholar 

  27. A. Farzadi, F. Bakhshi, M. Solati-Hashjin, M. Asadi-Eydivand, N.A. Abu Osman, Ceram. Int. 40(4), 6021–6029 (2014)

    Article  CAS  Google Scholar 

  28. I.V. Fadeev, L.I. Shvorneva, S.M. Barinov, V.P. Orlovskii, Inorg. Mater. 39(9), 947–950 (2003)

    Article  CAS  Google Scholar 

  29. E. Wu, E.H. Kisi, E.M.A. Gray, J. Appl. Crystallogr. 31, 363–368 (1998)

    Article  CAS  Google Scholar 

  30. E. Landi, A. Tampieri, G. Celotti, S. Sprio, J. Eur. Ceram. Soc. 20, 2377–2387 (2000)

    Article  CAS  Google Scholar 

  31. J. Kolmas, A. Jaklewicz, A. Zima, M. Bucko, Z. Paszkiewicz, J. Lis, A. Slósarczyk, W. Kolodziejski, J. Mol. Struct 987, 40–50 (2011)

    Article  CAS  Google Scholar 

  32. A. Bigi, G. Falini, E. Foresti, A. Ripamonti, M. Gazzano, N. Roveri, J. Inorg. Bio-chem. 49(1), 69–78 (1993)

    Article  CAS  Google Scholar 

  33. A. Destainville, E. Champion, D. Bernache-Assollant, E. Laborde, Mater. Chem. Phys. 80(1), 269–277 (2003)

    Article  CAS  Google Scholar 

  34. I. Cacciotti, A. Bianco, M. Lombardi, L. Montanaro, J. Eur. Ceram. Soc. 29(14), 2969–2978 (2009)

    Article  CAS  Google Scholar 

  35. K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biomaterials 27(18), 3413–3431 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. E. Boanini, M. Gazzano, A. Bigi, Acta Biomater. 6(6), 1882–1894 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. M. Vallet-Regí, D. Arcos, J. Mater. Chem. 15(15), 1509–1516 (2005)

    Article  Google Scholar 

  38. Y.W. Gu, K.A. Khor, P. Cheang, Biomaterials 25(18), 4127–4134 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. S. Sprio, A. Tampieri, E. Landi, M. Sandri, S. Martorana, G. Celotti, G. Logroscino, Mater. Sci. Eng. C 28(1), 179–187 (2008)

    Article  CAS  Google Scholar 

  40. M.H. Fathi, A. Hanifi, V. Mortazavi, J. Mater. Process. Technol. 202(1–3), 536–542 (2008)

    Article  CAS  Google Scholar 

  41. H. Pan, X. Zhao, B.W. Darvell, W.W. Lu, Acta Biomater. 6(11), 4181–4188 (2010)

    Article  CAS  PubMed  Google Scholar 

  42. M. Gao, W. Wang, H. Yang, B.C. Ye, Chem. Eng. J. 380, 122459 (2020)

    Article  CAS  Google Scholar 

  43. C. Lei, M. Pi, D. Xu, C. Jiang, B. Cheng, Appl. Surf. Sci. 426, 360–368 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravinder Pal Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, A., Singh, R.P. & Saggu, H.S. Novel Mesoporous Cationic Substituted Hydroxyapatite Particles for Multipurpose Applications. J Inorg Organomet Polym 32, 803–813 (2022). https://doi.org/10.1007/s10904-021-02175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02175-y

Keywords

Navigation