Skip to main content
Log in

Sol—gel synthesis, properties and protein loading/delivery capacity of hollow bioactive glass nanospheres with large hollow cavity and mesoporous shell

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Hollow nanospheres exhibit unique properties and find a wide interest in several potential applications such as drug delivery. Herein, novel hollow bioactive glass nanospheres (HBGn) with large hollow cavity and large mesopores in their outer shells were synthesized by a simple and facile one-pot ultrasound assisted sol—gel method using PEG as the core soft-template. Interestingly, the produced HBGn exhibited large hollow cavity with ∼43 nm in diameter and mesoporous shell of ∼37 nm in thickness and 7 nm pore size along with nanosphere size around 117 nm. XPS confirmed the presence of Si and Ca elements at the surface of the HBGn outer shell. Notably, HBGn showed high protein loading capacity (∼570 mg of Cyto c per 1 g of HBGn) in addition to controlled protein release over 5 d. HBGn also demonstrated a good in vitro capability of releasing calcium (Ca2+: 170 ppm) and silicate (SiO44−: 78 ppm) ions in an aqueous medium over 2 weeks under physiological-like conditions. Excellent in vitro growth of bone-like hydroxyapatite nanocrystals was exhibited by HBGn during the soaking in SBF. A possible underlying mechanism involving the formation of spherical aggregates (coils) of PEG was proposed for the formation process of HBGn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deodhar G V, Adams M L, Trewyn B G. Controlled release and intracellular protein delivery from mesoporous silica nanoparticles. Biotechnology Journal, 2017, 12(1): 1600408

    Article  Google Scholar 

  2. Leader B, Baca Q J, Golan D E. Protein therapeutics: a summary and pharmacological classification. Nature Reviews Drug Discovery, 2008, 7(1): 21–39

    Article  CAS  Google Scholar 

  3. Guziewicz N, Best A, Perez-Ramirez B, et al. Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials, 2011, 32(10): 2642–2650

    Article  CAS  Google Scholar 

  4. Yasun E, Gandhi S, Choudhury S, et al. Hollow micro and nanostructures for therapeutic and imaging applications. Journal of Drug Delivery Science and Technology, 2020, 60: 102094

    Article  CAS  Google Scholar 

  5. Vargason A M, Anselmo A C, Mitragotri S. The evolution of commercial drug delivery technologies. Nature Biomedical Engineering, 2021, 5(9): 951–967

    Article  Google Scholar 

  6. Xu C, Lei C, Yu C. Mesoporous silica nanoparticles for protein protection and delivery. Frontiers in Chemistry, 2019, 7: 290

    Article  CAS  Google Scholar 

  7. Raman V, Van Dessel N, Hall C L, et al. Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases. Nature Communications, 2021, 12(1): 6116

    Article  CAS  Google Scholar 

  8. Ray M, Lee Y W, Scaletti F, et al. Intracellular delivery of proteins by nanocarriers. Nanomedicine, 2017, 12(8): 941–952

    Article  CAS  Google Scholar 

  9. Zhao D, Yang N, Xu L, et al. Hollow structures as drug carriers: recognition, response, and release. Nano Research, 2022, 15(2): 739–757

    Article  CAS  Google Scholar 

  10. Fu Z, Zhou Q, Li L, et al. Preparation of hollow silica nanoparticles using cationic spherical polyelectrolyte brushes as catalytic template. Colloid & Polymer Science, 2020, 298(7): 879–886

    Article  CAS  Google Scholar 

  11. Sharma J, Polizos G. Hollow silica particles: recent progress and future perspectives. Nanomaterials, 2020, 10(8): 1599

    Article  CAS  Google Scholar 

  12. Zhu Y, Zhang M, Wei S, et al. Temperature-responsive P(NIPAM-co-NHMA)-grafted organic-inorganic hybrid hollow mesoporous silica nanoparticles for controlled drug delivery. Journal of Drug Delivery Science and Technology, 2022, 70: 103197

    Article  CAS  Google Scholar 

  13. Li B, Zeng H C. Architecture and preparation of hollow catalytic devices. Advanced Materials, 2019, 31(38): 1801104

    Article  Google Scholar 

  14. Bao Y, Shi C, Wang T, et al. Recent progress in hollow silica: template synthesis, morphologies and applications. Microporous and Mesoporous Materials, 2016, 227: 121–136

    Article  CAS  Google Scholar 

  15. Wu X, Wei M, Yu S, et al. Formation of cerium oxide hollow spheres and investigation of hollowing mechanism. SN Applied Sciences, 2019, 1(2): 170

    Article  Google Scholar 

  16. El Mel A A, Nakamura R, Bittencourt C. The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes. Beilstein Journal of Nanotechnology, 2015, 6: 1348–1361

    Article  CAS  Google Scholar 

  17. Fan H J, Gösele U, Zacharias M. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small, 2007, 3(10): 1660–1671

    Article  CAS  Google Scholar 

  18. Soares S F, Fernandes T, Daniel-da-Silva A L, et al. The controlled synthesis of complex hollow nanostructures and prospective applications. Proceedings A: Mathematical, Physical and Engineering Sciences, 2019, 475(2224): 20180677

    Google Scholar 

  19. Mutlu N, Beltrán AM, Nawaz Q, et al. Combination of selective etching and impregnation toward hollow mesoporous bioactive glass nanoparticles. Nanomaterials, 2021, 11(7): 1846

    Article  CAS  Google Scholar 

  20. Li B, Luo W, Wang Y, et al. Bioactive SiO2—CaO—P2O5 hollow nanospheres for drug delivery. Journal of Non-Crystalline Solids, 2016, 447: 98–103

    Article  CAS  Google Scholar 

  21. Pappas G S, Bilalis P, Kordas G C. Synthesis and characterization of SiO2—CaO—P2O5 hollow nanospheres for biomedical applications. Materials Letters, 2012, 67(1): 273–276

    Article  CAS  Google Scholar 

  22. Liu T, Li Z, Ding X, et al. Facile synthesis of hollow bioactive glass nanospheres with tunable size. Materials Letters, 2017, 190: 99–102

    Article  CAS  Google Scholar 

  23. Wang X, Miao X, Li Z, et al. Fabrication of mesoporous silica hollow spheres using triblock copolymer PEG—PPG—PEG as template. Journal of Non-Crystalline Solids, 2010, 356(18–19): 898–905

    Article  CAS  Google Scholar 

  24. Abdollahi S N, Naderi M, Amoabediny G. Synthesis and characterization of hollow gold nanoparticles using silica spheres as templates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436: 1069–1075

    Article  CAS  Google Scholar 

  25. Xie Y, Kocaefe D, Chen C, et al. Review of research on template methods in preparation of nanomaterials. Journal of Nanomaterials, 2016, 2016: 2302595

    Article  Google Scholar 

  26. Son S J, Bai X, Lee S B. Inorganic hollow nanoparticles and nanotubes in nanomedicine Part 1. Drug/gene delivery applications. Drug Discovery Today, 2007, 12(15–16): 650–656

    Article  CAS  Google Scholar 

  27. Mai Z, Chen J, Cao Q, et al. Rational design of hollow mesoporous titania nanoparticles loaded with curcumin for UV-controlled release and targeted drug delivery. Nanotechnology, 2021, 32(20): 205604

    Article  CAS  Google Scholar 

  28. Lin K, Gan Y, Zhu P, et al. Hollow mesoporous polydopamine nanospheres: synthesis, biocompatibility and drug delivery. Nanotechnology, 2021, 32(28): 285602

    Article  CAS  Google Scholar 

  29. Xue J, Zheng W, Wang L, et al. Scalable fabrication of polydopamine nanotubes based on curcumin crystals. ACS Biomaterials Science & Engineering, 2016, 2(4): 489–493

    Article  CAS  Google Scholar 

  30. Teng Z, Li W, Tang Y, et al. Mesoporous organosilica hollow nanoparticles: synthesis and applications. Advanced Materials, 2019, 31(38): 1707612

    Article  Google Scholar 

  31. Lin C Y, Li W P, Huang S P, et al. Hollow mesoporous silica nanosphere-supported FePt nanoparticles for potential theranostic applications. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(36): 7598–7607

    Article  CAS  Google Scholar 

  32. Kong M, Tang J, Qiao Q, et al. Biodegradable hollow mesoporous silica nanoparticles for regulating tumor microenvironment and enhancing antitumor efficiency. Theranostics, 2017, 7(13): 3276–3292

    Article  CAS  Google Scholar 

  33. Migneco C, Fiume E, Verné E, et al. A guided walk through the world of mesoporous bioactive glasses (MBGs): fundamentals, processing, and applications. Nanomaterials, 2020, 10(12): 2571

    Article  CAS  Google Scholar 

  34. Kapp M, Li C, Xu Z, et al. Protein adsorption on SiO2—CaO bioactive glass nanoparticles with controllable Ca content. Nanomaterials, 2021, 11(3): 561

    Article  CAS  Google Scholar 

  35. El-Fiqi A, Kim H W. Sol—gel synthesis and characterization of novel cobalt ions-containing mesoporous bioactive glass nanospheres as hypoxia and ferroptosis-inducing nanotherapeutics. Journal of Non-Crystalline Solids, 2021, 569: 120999

    Article  CAS  Google Scholar 

  36. Hu Q, Li Y, Zhao N, et al. Facile synthesis of hollow mesoporous bioactive glass sub-micron spheres with a tunable cavity size. Materials Letters, 2014, 134: 130–133

    Article  CAS  Google Scholar 

  37. Wang Y, Chen X. Facile synthesis of hollow mesoporous bioactive glasses with tunable shell thickness and good monodispersity by micro-emulsion method. Materials Letters, 2017, 189: 325–328

    Article  CAS  Google Scholar 

  38. Wang Y, Pan H, Chen X. The preparation of hollow mesoporous bioglass nanoparticles with excellent drug delivery capacity for bone tissue regeneration. Frontiers in Chemistry, 2019, 7: 283

    Article  CAS  Google Scholar 

  39. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006, 27(15): 2907–2915

    Article  CAS  Google Scholar 

  40. El-Fiqi A, Allam R, Kim H W. Antioxidant cerium ions-containing mesoporous bioactive glass ultrasmall nanoparticles: structural, physico-chemical, catalase-mimic and biological properties. Colloids and Surfaces B: Biointerfaces, 2021, 206: 111932

    Article  CAS  Google Scholar 

  41. El-Fiqi A, Mandakhbayar N, Jo S B, et al. Nanotherapeutics for regeneration of degenerated tissue infected by bacteria through the multiple delivery of bioactive ions and growth factor with antibacterial/angiogenic and osteogenic/odontogenic capacity. Bioactive Materials, 2021, 6(1): 123–136

    Article  CAS  Google Scholar 

  42. Mudalige T, Qu H, Van Haute D, et al. Chapter 11 — Characterization of nanomaterials: tools and challenges. In: López Rubio A, Fabra Rovira M J, Martinez Sans M, et al., eds. Nanomaterials for Food Applications. Amsterdam, Netherlands: Elsevier, 2019, 313–353

    Chapter  Google Scholar 

  43. El-Fiqi A, Kim J H, Kim H W. Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: physicochemical, mechanical and in vivo evaluations. Materials Science and Engineering C, 2020, 110: 110660

    Article  CAS  Google Scholar 

  44. El-Fiqi A, Buitrago J O, Yang S H, et al. Biomimetically grown apatite spheres from aggregated bioglass nanoparticles with ultrahigh porosity and surface area imply potential drug delivery and cell engineering applications. Acta Biomaterialia, 2017, 60: 38–49

    Article  CAS  Google Scholar 

  45. El-Fiqi A, Kim H W. Nano/micro-structured poly(ε-caprolactone)/gelatin nanofibers with biomimetically-grown hydroxyapatite spherules: high protein adsorption, controlled protein delivery and sustained bioactive ions release designed as a multifunctional bone regenerative membrane. Ceramics International, 2021, 47(14): 19873–19885

    Article  CAS  Google Scholar 

  46. Soulet F, Al Saati T, Roga S, et al. Fibroblast growth factor-2 interacts with free ribosomal protein S19. Biochemical and Biophysical Research Communications, 2001, 289(2): 591–596

    Article  CAS  Google Scholar 

  47. Slowing I I, Trewyn B G, Lin V S Y. Mesoporous silica nanoparticles for intracellular delivery of membraneimpermeable proteins. Journal of the American Chemical Society, 2007, 129(28): 8845–8849

    Article  CAS  Google Scholar 

  48. Li B, Zhao Y, Xu X, et al. Fabrication of hollow Sb2O3 microspheres by PEG coil template. Chemistry Letters, 2006, 35(9): 1026–1027

    Article  CAS  Google Scholar 

  49. Azri A, Giamarchi P, Grohens Y, et al. Polyethylene glycol aggregates in water formed through hydrophobic helical structures. Journal of Colloid and Interface Science, 2012, 379(1): 14–19

    Article  CAS  Google Scholar 

  50. Israelachvili J. The different faces of poly(ethylene glycol). Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(16): 8378–8379

    Article  CAS  Google Scholar 

  51. Xu Y, Jiao X, Chen D. Peg-assisted preparation of single-crystalline Cu2O hollow nanocubes. The Journal of Physical Chemistry C, 2008, 112(43): 16769–16773

    Article  CAS  Google Scholar 

  52. Xu Y, Chen D, Jiao X, et al. Nanosized Cu2O/PEG400 composite hollow spheres with mesoporous shells. The Journal of Physical Chemistry C, 2007, 111(44): 16284–16289

    Article  CAS  Google Scholar 

  53. Cui Y, Liu L, Li B, et al. Fabrication of tunable core—shell structured TiO2 mesoporous microspheres using linear polymer polyethylene glycol as templates. The Journal of Physical Chemistry C, 2010, 114(6): 2434–2439

    Article  CAS  Google Scholar 

  54. Zhou X, Chen S, Zhang D, et al. Microsphere organization of nanorods directed by PEG linear polymer. Langmuir, 2006, 22(4): 1383–1387

    Article  CAS  Google Scholar 

  55. Rao J, Yu A, Shao C, et al. Construction of hollow and mesoporous ZnO microsphere: a facile synthesis and sensing property. ACS Applied Materials & Interfaces, 2012, 4(10): 5346–5352

    Article  CAS  Google Scholar 

  56. Dhas N A, Suslick K S. Sonochemical preparation of hollow nanospheres and hollow nanocrystals. Journal of the American Chemical Society, 2005, 127(8): 2368–2369

    Article  CAS  Google Scholar 

  57. Bang J H, Suslick K S. Sonochemical synthesis of nanosized hollow hematite. Journal of the American Chemical Society, 2007, 129(8): 2242–2243

    Article  CAS  Google Scholar 

  58. Xu H, Zeiger B W, Suslick K S. Sonochemical synthesis of nanomaterials. Chemical Society Reviews, 2013, 42(7): 2555–2567

    Article  CAS  Google Scholar 

  59. Zhang M, Chang J. Surfactant-assisted sonochemical synthesis of hollow calcium silicate hydrate (CSH) microspheres for drug delivery. Ultrasonics Sonochemistry, 2010, 17(5): 789–792

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed El-Fiqi.

Supplementary materials

11706_2022_608_MOESM1_ESM.pdf

Sol—gel synthesis, properties and protein loading/delivery capacity of hollow bioactive glass nanospheres with large hollow cavity and mesoporous shell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Fiqi, A. Sol—gel synthesis, properties and protein loading/delivery capacity of hollow bioactive glass nanospheres with large hollow cavity and mesoporous shell. Front. Mater. Sci. 16, 220608 (2022). https://doi.org/10.1007/s11706-022-0608-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-022-0608-6

Keywords

Navigation