Skip to main content
Log in

Recent developments of nanoparticle-based enrichment methods for mass spectrometric analysis in proteomics

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In proteome research, rapid and effective separation strategies are essential for successful protein identification due to the broad dynamic range of proteins in biological samples. Some important proteins are often expressed in ultra low abundance, thus making the pre-concentration procedure before mass spectrometric analysis prerequisite. The main purpose of enrichment is to isolate target molecules from complex mixtures to reduce sample complexity and facilitate the subsequent analyzing steps. The introduction of nanoparticles into this field has accelerated the development of enrichment methods. In this review, we mainly focus on recent developments of using different nanomaterials for pre-concentration of low-abundance peptides/ proteins, including those containing post-translational modifications, such as phosphorylation and glycosylation, prior to mass spectrometric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fields S. Proteomics in genomeland. Science, 2001, 291(5507): 1221–1224

    Article  CAS  Google Scholar 

  2. Anderson NL, Anderson NG. The human plasma proteome. Mol Cell Proteomics, 2002, 1(11): 845–867

    Article  CAS  Google Scholar 

  3. Corthals GL, Wasinger VC, Hochstrasser DF, Sanchez JC. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis, 2000, 21(6): 1104–1115

    Article  CAS  Google Scholar 

  4. Gao M, Deng C, Yu W, Zhang Y, Yang P, Zhang X. Large scale depletion of the high-abundance proteins and analysis of middle- and low-abundance proteins in human liver proteome by multidimensional liquid chromatography. Proteomics, 2008, 8(5): 939–947

    Article  CAS  Google Scholar 

  5. Zhang LJ, Lu HJ, Yang PY. Development of preconcentration for mass spectrometry in proteomics. Chin J Anal Chem, 2007, 35(1): 146–152

    CAS  Google Scholar 

  6. Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol, 2004, 22(1): 47–52

    Article  CAS  Google Scholar 

  7. Niemeyer CM. Nanoparticles, proteins, and nucleic Acids: Biotechnology meets materials science. Angew Chem Int Ed, 2001, 40(22): 4128–4158

    Article  CAS  Google Scholar 

  8. Jun YW, Lee JH, Cheon J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed, 2008, 47(28): 5122–5135

    Article  CAS  Google Scholar 

  9. Santra S, Dutta D, Walter GA, Moudgil BM. Fluorescent nanoparticle probes for cancer imaging. Technol Cancer Res T, 2005, 4(6): 593–601

    CAS  Google Scholar 

  10. Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther, 2006, 13(4): 283–287

    Article  CAS  Google Scholar 

  11. Yoon TJ, Kim JS, Kim BG, Yu KN, Cho MH, Lee JK. Multifunctional nanoparticles possessing a “magnetic motor effect” for drug or gene delivery. Angew Chem Int Ed, 2005, 44(7): 1068–1071

    Article  Google Scholar 

  12. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery dystems. Nano Lett, 2006, 6(11): 2427–2430

    Article  CAS  Google Scholar 

  13. You CC, Miranda OR, Gider B, Ghosh PS, Kim IB, Erdogan B, Krovi SA, Bunz UHF, Rottello VM. Detection and identification of proteins using nanoparticle-fluorescent polymer “chemical nose” sensors. Nat Nanotechnol, 2007, 2(5): 318–323

    Article  CAS  Google Scholar 

  14. You CC, Chompoosor A, Rotello VM. The biomacromoleculenanoparticle interface. Nano Today, 2007, 2(3): 34–43

    Article  Google Scholar 

  15. Hicks JF, Zamborini FP, Osisek AJ, Murray RW. The dynamics of electron self-exchange between nanoparticles. J Am Chem Soc, 2001, 123(29): 7048–7053

    Article  CAS  Google Scholar 

  16. Hicks JF, Miles DT, Murray RW. Quantized double-layer charging of highly monodisperse metal nanoparticles. J Am Chem Soc, 2002, 124(44): 13322–13328

    Article  CAS  Google Scholar 

  17. Skaff H, Sill K, Emrick T. Quantum dots tailored with poly(paraphenylene vinylene). J Am Chem Soc, 2004, 126(36): 11322–11325

    Article  CAS  Google Scholar 

  18. Redl FX, Black CT, Papaefthymiou GC, Sandstrom RL, Yin M, Zeng H, Murray CB, O’Brien SP. Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J Am Chem Soc, 2004, 126(44): 14583–14599

    Article  CAS  Google Scholar 

  19. Park HG. Nanoparticle-based detection technology for DNA analysis. Biotechnol Bioprocess Eng, 2003, 8(4): 221–226

    Article  CAS  Google Scholar 

  20. Zheng M, Huang X. Nanoparticles comprising a mixed monolayer for specific bindings with biomolecules. J Am Chem Soc, 2004, 126(38): 12047–12054

    Article  CAS  Google Scholar 

  21. Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM, Addleman SR, Kaysen GA, Moudgil BM, Weber TJ. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci, 2007, 100(1): 301–315

    Article  CAS  Google Scholar 

  22. Kaufman ED, Belyea J, Johnson MC, Nicholson ZM, Ricks JL, Shah PK, Bayless M, Pettersson T, Feldotö Z, Blomberg E, Claesson P, Franzen S. Probing protein adsorption onto mercaptoundecanoic acid stabilized gold nanoparticles and surfaces by quartz crystal microbalance and zeta-potential measurements. Langmuir, 2007, 23(11): 6053–6062

    Article  CAS  Google Scholar 

  23. Cedervall T, Lynch I, Foy M, Berggård T, Donnelly SC, Cagney G, Linse S, Dawson KA. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed, 2007, 46(30): 5754–5756

    Article  CAS  Google Scholar 

  24. Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S. Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett, 2007, 7(4): 914–920

    Article  CAS  Google Scholar 

  25. Cedervall T, Lynch S, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA, 2007, 104(7): 2050–2055

    Article  CAS  Google Scholar 

  26. Lynch I, Dawson KA. Protein-nanoparticle interactions. Nano Today, 2008, 3(12): 40–47

    Article  CAS  Google Scholar 

  27. Fischer NO, Mclintosh CM, Simard JM, Rotello VM. Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proc Natl Acad Sci USA, 2002, 99(8): 5018–5023

    Article  CAS  Google Scholar 

  28. Lin CC, Yeh YC, Yang CY, Chen CL, Chen GF, Chen CC, Wu YC. Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J Am Chem Soc, 2002, 124(14): 3508–3509

    Article  CAS  Google Scholar 

  29. Zheng M, Davidson F, Huang X. Ethylene glycol monolayer protected nanoparticles for eliminating nonspecific binding with biological molecules. J Am Chem Soc, 2003, 125(26): 7790–7791

    Article  CAS  Google Scholar 

  30. Xu C, Xu K, Gu H, Zhong X, Guo Z, Zheng R, Zhang X, Xu B. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J Am Chem Soc, 2004, 126(11): 3392–3393

    Article  CAS  Google Scholar 

  31. Robinson A, Fang JM, Chou PT, Liao KW, Chu RM, Lee SJ. Probing lectin and sperm with carbohydrate-modified quantum dots. ChemBioChem, 2005, 6(10): 1899–1905

    Article  CAS  Google Scholar 

  32. Nelsestuen GL, Zhang Y, Martinez MB, Key NS, Jilma B, Verneris M, Sinaiko A, Kasthuri RS. Plasma protein profiling: unique and stable features of individuals. Proteomics, 2005, 5(15): 4012–4024

    Article  CAS  Google Scholar 

  33. Kreunin P, Yoo C, Urquidi V, Lubman DM, Goodison S. Proteomic profiling identifies breast tumor metastasis-associated factors in an isogenic model. Proteomics, 2007, 7(2): 299–312

    Article  CAS  Google Scholar 

  34. Matsui M, Kiyozumi Y, Yamamoto T, Mizushina Y, Mizukami F, Sakaguchi K. Selective adsorption of biopolymers on zeolites. Chem Eur J, 2001, 7(7): 1555–1560

    Article  CAS  Google Scholar 

  35. Zhang Y, Wang X, Shan W, Wu B, Fan H, Yu X, Tang Y, Yang P. Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis. Angew Chem Int Ed, 2005, 44(4): 615–617

    Article  CAS  Google Scholar 

  36. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev, 2004, 104(1): 293–346

    Article  CAS  Google Scholar 

  37. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277(5329): 1078–1081

    Article  CAS  Google Scholar 

  38. Taton TA, Mirkin CA, Letsinger RL. Scanometric DNA array detection with nanoparticle probes. Science, 2000, 289(5485): 1757–1760

    Article  CAS  Google Scholar 

  39. Nam JM, Park SJ, Mirkin CA. Bio-barcodes based on oligonucleotide-modified nanoparticles. J Am Chem Soc, 2002, 124(15): 3820–3821

    Article  CAS  Google Scholar 

  40. Teng CH, Ho KC, Lin YS, Chen YC. Gold nanoparticles as selective and concentrating probes for samples in MALDI MS analysis. Anal Chem, 2004, 76(15): 4337–4342

    Article  CAS  Google Scholar 

  41. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci, 1973, 241(105): 20–22

    CAS  Google Scholar 

  42. Wang A, Wu CJ, Chen SH. Gold nanoparticle-assisted protein enrichment and electroelution for biological samples containing low protein concentration-a prelude of gel electrophoresis. J Proteome Res, 2006, 5(6): 1488–1492

    Article  CAS  Google Scholar 

  43. Sudhir PR, Wu HF, Zhou ZC. Identification of peptides using gold nanoparticle-assisted single-drop microextraction coupled with AP-MALDI mass spectrometry. Anal Chem, 2005, 77(22): 7380–7385

    Article  CAS  Google Scholar 

  44. Poh WC, Loh KP. Biosensing properties of diamond and carbon nanotubes. Langmuir, 2004, 20(13): 5484–5492

    Article  CAS  Google Scholar 

  45. Chen RJ, Zhang Y, Wang D, Dai H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc, 2001, 123(16): 3838–3839

    Article  CAS  Google Scholar 

  46. Shim M, Kam NWS, Chen RJ, Li Y, Dai H. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett, 2002, 2(4): 285–288

    Article  CAS  Google Scholar 

  47. Chen WY, Wang LS, Chiu HT, Chen YC, Lee CY. Carbon nanotubes as affinity probes for peptides and proteins in MALDI MS analysis. J Am Soc Mass Spectrom, 2004, 15(11): 1629–1635

    Article  CAS  Google Scholar 

  48. Jiang L, Gao L. Modified carbon nanotubes: an effective way to selective attachment of gold nanoparticles. Carbon, 2003, 41(15): 2923–2929

    Article  CAS  Google Scholar 

  49. Ren SF, Guo YL. Carbon nanotubes (2,5-dihydroxybenzoyl hydrazine) derivative as pH adjustable enriching reagent and matrix for MALDI analysis of trace peptides. J Am Soc Mass Spectrom, 2006, 17(7): 1023–1027

    Article  CAS  Google Scholar 

  50. Pan C, Xu S, Zou H, Guo Z, Zhang Y, Guo B. Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom, 2005, 16(2): 263–270

    Article  CAS  Google Scholar 

  51. Li X, Xu S, Pan C, Zhou H, Jiang X, Zhang Y, Ye M, Zou H. Enrichment of peptides from plasma for peptidome analysis using multiwalled carbon nanotubes. J Sep Sci, 2007, 30(6): 930–943

    Article  CAS  Google Scholar 

  52. Najam-ul-Haq M, Rainer M, Schwarzenauer T, Huch CW, Bonn GK. Chemically modified carbon nanotubes as material enhanced laser desorption ionisation (MELDI) material in protein profiling. Anal Chim Acta, 2006, 561(1–2): 32–39

    Article  CAS  Google Scholar 

  53. Friedman SH, Decamp DL, Sijbesma RP, Srdanov G, Wudl F, Kenyon GL. Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification

  54. Shiea J, Huang JP, Teng CF, Jeng J, Wang LY, Chiang LY. Use of a water-soluble fullerene derivative as precipitating reagent and matrix-assisted laser desorption/ionization matrix to selectively detect charged species in aqueous solutions. Anal Chem, 2003, 75(14): 3587–3595

    Article  CAS  Google Scholar 

  55. Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc, 2005, 127(50): 17604–17605

    Article  CAS  Google Scholar 

  56. Liu KK, Cheng CL, Chang CC, Chao JI. Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology, 2007, 18(32): 325102–325111

    Article  CAS  Google Scholar 

  57. Huang LCL, Chang HC. Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir, 2004, 20(14): 5879–5884

    Article  CAS  Google Scholar 

  58. Kong XL, Huang LCL, Hsu CM, Chen WH, Han CC, Chang HC. High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal Chem, 2005, 77(1): 259–265

    Article  CAS  Google Scholar 

  59. Chen WH, Lee SC, Sabu S, Fang HC, Chung SC, Han CC, Chang HC. Solid-phase extraction and elution on diamond (SPEED): a fast and general platform for proteome analysis with mass spectrometry. Anal Chem, 2006, 78(12): 4228–4234

    Article  CAS  Google Scholar 

  60. Wei LM, Shen Q, Lu HJ, Yang PY. Pretreatment of low-abundance peptides on detonation nanodiamond for direct analysis by matrixassisted laser desorption/ionization time-of-flight mass spectrometry. J Chromatogr B, 2009, 877(29): 3631–3637

    Article  CAS  Google Scholar 

  61. Krueger A. New carbon materials: biological applications of functionalized nanodiamond materials. Chem Eur J, 2008, 14(5): 1382–1390

    Article  CAS  Google Scholar 

  62. Balazs AC, Emrick T, Russell TP. Nanoparticle polymer composites: where two small worlds meet. Science, 314, 5802: 1107–1110

  63. Jia W, Chen X, Lu H, Yang P. CaCO3-poly(methyl methacrylate) nanoparticles for fast enrichment of low-abundance peptides followed by CaCO3-core removal for MALDI-TOF MS analysis. Angew Chem Int Ed, 2006, 45(20): 3345–3349

    Article  CAS  Google Scholar 

  64. Xiong HM, Guan XY, Jin LH, Shen WW, Lu HJ, Xia YY. Surfactant-free synthesis of SnO2@PMMA and TiO2@PMMA core-shell nanobeads designed for peptide/protein enrichment and MALDITOF MS analysis. Angew Chem Int Ed, 2008, 47(22): 4204–4207

    Article  CAS  Google Scholar 

  65. Shen W, Xiong H, Xu Y, Cai S, Lu H, Yang P. ZnO-poly(methyl methacrylate) nanobeads for enriching and desalting low-abundant proteins followed by directly MALDI-TOF MS analysis. Anal Chem, 2008, 80(17): 6758–6763

    Article  CAS  Google Scholar 

  66. Kresge CT, Leonowics ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoposous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710–712

    Article  CAS  Google Scholar 

  67. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552

    Article  CAS  Google Scholar 

  68. Yang P, Deng T, Zhao D, Feng P, Pine D, Chmelka BF, Whitesides GM, Stucky GD. Hierarchically ordered oxides. Science, 1998, 282(5397): 2244–2246

    Article  CAS  Google Scholar 

  69. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD. Generalized syntheses of large-poremesoporous metal oxides with semicrystalline frameworks. Nature, 1998, 396(6707): 152–155

    Article  CAS  Google Scholar 

  70. Zuo C, Yu W, Zhou X, Zhao D, Yang P. Highly efficient enrichment and subsequent digestion of proteins in the mesoporous molecular sieve silicate SBA-15 for matrix-assisted laser desorption/ionization mass spectrometry with time-of-flight/time-of-flight analyzer peptide mapping. Rapid Commun Mass Spectrom, 2006(20): 3139–3144

    Article  CAS  Google Scholar 

  71. Tian R, Zhang H, Ye M, Jiang X, Hu L, Li X, Bao X, Zou H. Selective extraction of peptides from human plasma by highly ordered mesoporous silica particles for peptidome analysis. Angew Chem Int Ed, 2007, 46(6): 962–965

    Article  CAS  Google Scholar 

  72. Tian R, Ye M, Hu L, Li X, Zou H. Selective extraction of peptides in acidic human plasma by porous silica nanoparticles for peptidome analysis with 2-D LC-MS/MS. J Sep Sci, 2007, 30(14): 2204–2209

    Article  CAS  Google Scholar 

  73. Tian R, Ren L, Ma H, Li X, Hu L, Ye M, Wu R, Tian Z, Liu Z, Zou H. Selective enrichment of endogenous peptides by chemically modified porous nanoparticles for peptidome analysis. J Chromatogr A, 2009, 1216(8): 1270–1278

    Article  CAS  Google Scholar 

  74. Chang SY, Zheng NY, Chen CS, Chen CD, Cheng YY, Wang CRC. Analysis of peptides and proteins affinity-bound to iron oxide nanoparticles by MALDI MS. J Am Soc Mass Spectrom, 2007, 18(5): 910–918

    Article  CAS  Google Scholar 

  75. Hunter T. Signaling—2000 and beyond. Cell. 2000, 100(1): 113–127

    Article  CAS  Google Scholar 

  76. Kim JK, Mastronardi FG, Wood DD. Lubman DM, Zand R, Moscarello MA. Multiple sclerosis-an important role for post-translational modifications of myelin basic protein in pathogenesis. Mol Cell Proteomics, 2003, 2(7): 453–462

    CAS  Google Scholar 

  77. Pandey A, Podtelejnikov AV, Blagoev B, Bustelo XR, Mann M, Lodish HF. Analysis of receptor signaling pathways by mass spectrometry: Identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc Natl Acad Sci USA, 2000, 97(1): 179–184

    Article  CAS  Google Scholar 

  78. Posewitz MC, Tempst P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem, 1999, 71(14): 2883–2892

    Article  CAS  Google Scholar 

  79. Pinkse MWH, Uitto PM, Hilhorst MJ, Ooms B, Heck AJR. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem, 2004, 76(14): 3935–3943

    Article  CAS  Google Scholar 

  80. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJD. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics, 2005, 4(7): 873–886

    Article  CAS  Google Scholar 

  81. Zhou H, Watts JD, Aebersold R. A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol, 2001, 19(4): 375–378

    Article  CAS  Google Scholar 

  82. Oda Y, Nagasu T, Chait BT. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol, 2001, 19(4): 379–382

    Article  CAS  Google Scholar 

  83. Zhang Y, Yu X, Wang X, Shan W, Yang P, Tang Y. Zeolite nanoparticles with immobilized metal ions: isolation and MALDI-TOF-MS/MS identification of phosphopeptides. Chem Commun, 2004, 24: 2882–2883

    Article  CAS  Google Scholar 

  84. Pan C, Ye M, Liu Y, Feng S, Jiang X, Han G, Zhu J, Zou H. Enrichment of phosphopeptides by Fe3+-immobilized mesoporous nanoparticles of MCM-41 for MALDI and nano-LC-MS/MS analysis. J Proteome Res, 2006, 5(11): 3114–3124

    Article  CAS  Google Scholar 

  85. Hu L, Zhou H, Li Y, Sun S, Guo L, Ye M, Tian X, Gu J, Yang S, Zou H. Profiling of endogenous serum phosphorylated peptides by titanium (IV) immobilized mesoporous silica particles enrichment and MALDI-TOFMS detection. Anal Chem, 2009, 81(1): 94–104

    Article  CAS  Google Scholar 

  86. Tan F, Zhang Y, Mi W, Wang J, Wei J, Cai Y, Qian X. Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver. J Proteome Res, 2008, 7(3): 1078–1087

    Article  CAS  Google Scholar 

  87. Zhou H, Tian R, Ye M, Xu S, Feng S, Pan C, Jiang X, Li X, Zou H. Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis, 2007, 28(13): 2201–2215

    Article  CAS  Google Scholar 

  88. Nelson CA, Szczech JR, Xu Q, Lawrence MJ, Jin S, Ge Y. Mesoporous zirconium oxide nanomaterials effectively enrich phosphopeptides for mass spectrometry-based phosphoproteomics. Chem Commun, 2009, 43: 6607–6609

    Article  CAS  Google Scholar 

  89. Liang SS, Makamba H, Huang SY, Chen SH. Nano-titanium dioxide composites for the enrichment of phosphopeptides. J Chromatogr A, 2006, 1116(1–2): 38–45

    Article  CAS  Google Scholar 

  90. Hsieh HC, Sheu C, Shi FK, Li DT. Development of a titanium dioxide nanoparticle pipette-tip for the selective enrichment of phosphorylated peptides. J Chromatogr A, 2007, 1165(1–2): 128–135

    Article  CAS  Google Scholar 

  91. Chen CT, Chen YC. Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal Chem, 2005, 77(18): 5912–5919

    Article  CAS  Google Scholar 

  92. Chen CT, Chen YC. A two-matrix system for MALDI MS analysis of serine phosphorylated peptides concentrated by Fe3O4/Al2O3 magnetic nanoparticles. J Mass Spectrom, 2008, 43(4): 538–541

    Article  CAS  Google Scholar 

  93. Lin HY, Chen WY, Chen YC. Iron oxide/tantalum oxide core-shell magnetic nanoparticle-based microwave-assisted extraction for phosphopeptide enrichment from complex samples for MALDI MS analysis. Anal Bioanal Chem, 2009, 394(8): 2129–2136

    Article  CAS  Google Scholar 

  94. Qiao L, Roussel C, Wan J, Yang P, Girault HH, Liu B. Specific on-plate enrichment of phosphorylated peptides for direct MALDI-TOF MS analysis. J Proteome Res, 2007, 6(12): 4763–4769

    Article  CAS  Google Scholar 

  95. Tian Y, Zhou Y, Elliott S, Aebersold R, Zhang H. Solid-phase extraction of N-linked glycopeptides. Nat Protoc, 2007, 2(2): 334–339

    Article  CAS  Google Scholar 

  96. Wu L, Han DK. Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics. Expert Rev Proteomics, 2006, 3(6): 611–619

    Article  CAS  Google Scholar 

  97. Zhang L, Lu H, Yang P. Specific enrichment methods for glycoproteome research. Anal Bioanal Chem, 2010, 396(1): 199–203

    Article  CAS  Google Scholar 

  98. Yeap WS, Tan YY, Loh KP. Using detonation nanodiamond for the specific capture of glycoproteins. Anal Chem, 2008, 80(12): 4659–4665

    Article  CAS  Google Scholar 

  99. Zhou W, Yao N, Yao G, Deng C, Zhang X, Yang P. Facile synthesis of aminophenylboronic acid-functionalized magnetic nanoparticles for selective separation of glycopeptides and glycoproteins. Chem Commun, 2008, 43: 5577–5579

    Article  CAS  Google Scholar 

  100. Xu Y, Wu X, Zhang L, Lu H, Yang P, Webley PA, Zhao D. Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal Chem, 2009, 81(1): 503–508

    Article  CAS  Google Scholar 

  101. Zhang L, Xu Y, Yao H, Xie L, Yao J, Lu H, Yang P. Boronic acid functionalized core-satellite composite nanoparticles for advanced enrichment of glycopeptides and glycoproteins. Chem Eur J, 2009, 15(39): 10158–10166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HaoJie Lu or PengYuan Yang.

Additional information

Support from the Major State Basie Research Development Program (Grant No. 2007CB914100), the National Natural Science Foundation of China (Grant Nos. 20875016 & 20735005), the Ph.D. Programs Foundation of the Ministry of Education of China (Grant No. 200802460011), and Shanghai Projects (Grant Nos. 08DZ2293601, Eastern Scholar, Shu Guang and B109).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Lu, H. & Yang, P. Recent developments of nanoparticle-based enrichment methods for mass spectrometric analysis in proteomics. Sci. China Chem. 53, 695–703 (2010). https://doi.org/10.1007/s11426-010-0112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0112-1

Keywords

Navigation