Skip to main content
Log in

Substituent effect on the molecular stability, group interaction, detonation performance, and thermolysis mechanism of nitroamino-substituted cyclopentanes and cyclohexanes

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) method has been employed to study the effect of nitroamino group as a substituent in cyclopentane and cyclohexane, which usually construct the polycyclic or caged nitramines. Molecular structures were investigated at the B3LYP/6-31G** level, and isodesmic reactions were designed for calculating the group interactions. The results show that the group interactions accord with the group additivity, increasing with the increasing number of nitroamino groups. The distance between substituents influences the interactions. Detonation performances were evaluated by the Kamlet-Jacobs equations based on the predicted densities and heats of formation, while thermal stability and pyrolysis mechanism were studied by the computations of bond dissociation energy (BDE). It is found that the contributions of nitroamino groups to the detonation heat, detonation velocity, detonation pressure, and stability all deviate from the group additivity. Only 3a, 3b, and 9a–9c may be novel potential candidates of high energy density materials (HEDMs) according to the quantitative criteria of HEDM (ρ ≈ 1.9 g/cm3, D ≈ 9.0 km/s, P ≈ 40.0 GPa). Stability decreases with the increasing number of N-NO2 groups, and homolysis of N-NO2 bond is the initial step in the thermolysis of the title compounds. Coupled with the demand of thermal stability (BDE > 20 kcal/mol), only 1,2,4-trinitrotriazacyclohexane and 1,2,4,5-tetranitrotetraazacyclohexane are suggested as feasible energetic materials. These results may provide basic information for the molecular design of HEDMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi C S, Boutin H P. A Study of the crystal structure of β-cyclotetramethylenetetranitramine by neutron diffraction. Acta Crystal B, 1970, 26: 1235–1240

    Article  CAS  Google Scholar 

  2. Choi C S, Prince E. The crystal structure of cyclotrimethylene-trinitramine. Acta Crystal B, 1972, 28: 2857–2862

    Article  CAS  Google Scholar 

  3. Karpowicz R J, Bill T B. Comparison of the molecular structure of hexahydro-1,3,5-trinitro-s-triazine in the vapor, solution, and solid phases. J Phys Chem, 1984, 88, 348–352

    Article  CAS  Google Scholar 

  4. Kohno Y, Ueda K, Imamura A. Molecular dynamics simulations of initial decomposition processes on the unique N-N bond in nitramines in the crystalline state. J Phys Chem, 1996, 100: 4701–4712

    Article  CAS  Google Scholar 

  5. Sorescu D C, Rice B M, Thompson D L. Intermolecular packing for the hexahydro-1,3,5-trinitro-1,3,5-s-triazine crystal (RDX): A crystal packing, Monte Carlo and molecular dynamics study. J Phys Chem B, 1997, 101: 798–808

    Article  CAS  Google Scholar 

  6. Thomas D S. Monte Carlo calculations of the hydrostatic compression of hexahydro-1,3,5-trinitro-1,3,5-triazine and β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J Appl Phys, 1998, 83: 4142–4145

    Article  Google Scholar 

  7. Sorescu D C, Rice B M, Thompson D L. Theoretical studies of the hydrostatic compression of RDX, HMX, HNIW, and PETN crystals. J Phys Chem B, 1999, 103: 6783–6790

    Article  CAS  Google Scholar 

  8. Dmitry B, Grant D S, Thomas D S. Temperature-dependent shear viscosity coefficient of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): A molecular dynamics simulation study. J Chem Phys, 2000, 112: 7203–7208

    Article  Google Scholar 

  9. James P L, Thomas D S, Richard B E, Gregory A V. Electronic structure calculation of the structures and energies of the three pure polymorphic forms of crystalline HMX. J Phys Chem B, 2000, 104: 1009–1013

    Article  CAS  Google Scholar 

  10. Xiao J J, Zhang J, Yang D, Xiao H M. DFT Comparative studies on the structures and properties of heterocyclic nitramines. Acta Chim Sin, 2002, 60(12): 2110–2114

    CAS  Google Scholar 

  11. Ji G F, Xiao H M, Dong H S. High level calculations on structure and properties of crystalline β-HMX. Acta Chim Sin, 2002, 60(2): 194–199

    CAS  Google Scholar 

  12. Manaa M R, Fried L E, Melius C F, Elstner M, Frauenheim T. Decomposition of HMX at extreme conditions: A molecular dynamics simulation. J Phys Chem A, 2002, 106: 9024–9029

    Article  CAS  Google Scholar 

  13. Sewell T D, Menikoff R, Bedrov D, Smith G S. A molecular dynamics simulation study of elastic properties of HMX. J Chem Phys, 2003, 119: 7417–7426

    Article  CAS  Google Scholar 

  14. Xiao J J, Fang G Y, Ji G F, Xiao H M. Simulation investigation in the binding energy and mechanical properties of HMX-based polymer-bonded explosives. Chin Sci Bull, 2005, 50: 21–26

    Article  CAS  Google Scholar 

  15. Bell J A, Dunstan I. Chemistry of nitramines. Part III. Cyclic nitramines derived from trimethylenedinitramine. J Chem Soc C, 1966, 870–872

  16. Gilbert P S, Jack A. Research towards novel energetic materials. J Energ Mater, 1986, 45: 5–28

    Google Scholar 

  17. Archibald T G, Gilardi R, Baum K, George C. Synthesis and X-ray crystal structure of 1,3,3-trinitroazetidine. J Org Chem, 1990, 55: 2920–2924

    Article  CAS  Google Scholar 

  18. Jalovy Z, Zeman S, Sucesks M. 1,3,3-trinitroazetidine (TNAZ) Part I: Synthesis and properties. J Energ Mater, 2001, 19: 219–239

    Article  CAS  Google Scholar 

  19. Xiao J J, Gong X D, Xiao H M. The DFT predictions of the structure and property of cyclopentamethylenepentanitramine. Chin J Phys Chem, 2002, 15(6): 433–437

    CAS  Google Scholar 

  20. Fried L E, Manaa M R, Pagoria P F, Simpson R L. Design and synthesis of energetic materials. Annu Rev Mater Res, 2001, 31: 291–321

    Article  CAS  Google Scholar 

  21. Xiao H M, Xu X J, Qiu L. Theoretical Design of High Energy Density Materials. Beijing: Science Press, 2008

    Google Scholar 

  22. Eck G, Piteau M. Preparation of 2,4,6,8-tetranitro-2,4,6,8-tetrazabicyclo[3.3.0]octane. Brit. UK Pat. Appl. GB 2303849 A1, 5 Mar 1997

  23. Willer R L. Trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin. US4443602, Apr.17, 1984

  24. Nielsen A T, Chafin A P, Christian S L, Moore D W, Nadler M P, Nissan R A, Vanderah D J, Gilardi R D, George C F, Flippen-Anderson J L. Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron. 1998, 54: 11793–11812

    CAS  Google Scholar 

  25. Koppes W M, Chaykovsky M, Adolph H G, Gilardi R, George C. Synthesis and structure of some peri-substituted 2,4,6,8-tetraazabicyclo[3.3.0]octanes. J Org Chem, 1987, 52: 1113–1119

    Article  CAS  Google Scholar 

  26. Brill T B, Oyumi Y. Thermal decomposition of energetic materials. 18. Relationship of molecular composition to nitrous acid formation: bicyclo and spiro tetranitramines. J Phys Chem, 1986, 90(26): 6848–6853

    Article  CAS  Google Scholar 

  27. Nielsen A T, Nissan R A, Chafin A P, Gilardi R D, George C F. Polyazapolycyclics by condensation of aldehydes with amines. 3. Formation of 2,4,6,8-tetrabenzyl-2,4,6,8-tetraazabicyclo[3.3.0] octanes from formaldehyde, glyoxal, and benzylamines. J Org Chem, 1992, 57: 6756–6759

    Article  CAS  Google Scholar 

  28. Prabhakaran K V, Bhide N M, Kurian E M. Spectroscopic and thermal studies on 1,4,5,8-tetranitrotetraazadecalin (TNAD). Thermochim Acta, 1995, 249: 249–258

    Article  CAS  Google Scholar 

  29. Gilardi R, Flippen-Anderson J L, Evans R. cis-2,4,6,8-Tetranitro-1H, 5H-2,4,6,8-tetraazabicyclo[3.3.0]octane, the energetic compound ‘bicyclo-HMX’. Acta Crystal E, 2002, 58(9): 972–974

    Article  CAS  Google Scholar 

  30. Liu M H, Chen C, Hong Y S. Theoretical study on the detonation properties of energetic TNAD molecular derivatives. J Mol Struct (THEOCHEM), 2004, 710: 207–214

    Article  CAS  Google Scholar 

  31. Qiu L, Xiao H M, Ju X H, Gong X D. Theoretical study on the structures and properties of cyclic nitramines: Tetranitrotetraazadecalin (TNAD) and its isomers. Int J Quant Chem, 2005, 105: 48–56

    Article  CAS  Google Scholar 

  32. Qiu L, Xiao H M, Zhu W H, Xiao J J, Zhu W. Ab initio and molecular dynamics studies of crystalline TNAD (trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin). J Phys Chem B, 2006, 110, 10651–10661

    Article  CAS  Google Scholar 

  33. Xu X J, Xiao J J, Zhu W, Xiao H M, Huang H, Li J S. Molecular dynamics simulations for pure ɛ-CL-20 and ɛ-CL-20-based PBXs. J Phys Chem B, 2006, 110: 7203–7207

    Article  CAS  Google Scholar 

  34. Qiu L, Zhu W H, Xiao J J, Zhu W, Xiao H M, Huang H, Li J S. Molecular dynamics simulations of TNAD (trans-1,4,5,8-tetranitro-1, 4,5,8-tetraazadecalin)-based PBXs. J Phys Chem B, 2007, 111: 1559–1566

    Article  CAS  Google Scholar 

  35. Xu X J, Zhu W H, Xiao H M. DFT Studies on the four polymorphs of crystalline CL-20 and the influences of hydrostatic pressure on E-CL-20 crystal. J Phys Chem B, 2007, 111: 2090–2097

    Article  CAS  Google Scholar 

  36. Xu X J, Xiao J J, Huang H, Li J S, Xiao H M. Molecular dynamics simulations on the structures and properties of ɛ-CL-20-based PBXs—Primary theoretical studies on HEDM formulation design. Sci Chin Ser B-Chem, 2007, 37(6): 556–563

    Google Scholar 

  37. Qiu L, Zhu W H, Xiao J J, Xiao H M. Theoretical studies of solid bicyclo-HMX: Effects of hydrostatic pressure and temperature. J Phys Chem B, 2008, 112: 3882–3893

    Article  CAS  Google Scholar 

  38. Hrovat D A, Borden W T, Eaton P E, Kahr B. A computational study of the interactions among the nitro groups in octanitrocubane. J Am Chem Soc, 2001, 123: 1289–1293

    Article  CAS  Google Scholar 

  39. Kamlet M J, Jacobs S J. Chemistry of detonations. I. Simple method for calculating detonation properties of C-H-N-O explosives. J Chem Phys, 1968, 48: 23–35

    Article  CAS  Google Scholar 

  40. Blanksby S J, Ellison G B. Bond dissociation energies of organic molecules. Acc Chem Res, 2003, 36: 255–263

    Article  CAS  Google Scholar 

  41. Chung G, Schmidt M W, Gordon M S. An ab initio study of potential energy surfaces for N8 isomers. J Phys Chem A, 2000, 104: 5647–5650

    Article  CAS  Google Scholar 

  42. Becke A D. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  44. Hariharan P C, Pople J A. Self-consistent-field molecular orbital methods. XII. Further extension of Gaussian-type basis sets. Theor Chim Acta, 1973, 28: 213–222

    Article  CAS  Google Scholar 

  45. Qiu L, Xiao H M, Gong X D, Ju X H, Zhu W H. Crystal density predictions for nitramines based on quantum chemistry. J Hazard Mater, 2007, 141: 280–288

    Article  CAS  Google Scholar 

  46. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT: Gaussian, Inc., 2004

  47. Oxley J C, Kooh A B, Szekeres R, Zheng W. Mechanisms of nitramine thermolysis. J Phys Chem, 1994, 98: 7004–7008

    Article  CAS  Google Scholar 

  48. Mulliken R S. Electronic population analysis on LCAO-MO molecular wave functions. I J Chem Phys, 1955, 23: 1833–1840

    Article  CAS  Google Scholar 

  49. Xiao H M. Molecular Orbital Theory for Nitro Compounds. Beijing: National Defence industry Press, 1993

    Google Scholar 

  50. Dong H S, Zhou F F. High Energy Explosives and Correlative Physical Properties. Beijing: Science Press, 1989

    Google Scholar 

  51. Roth J. Encyclopedia of explosives and related items; Large Caliber Weapon System Laboratory, Armament Research and Development Command, U.S. Army, Dover, NJ, 1978, 8: 57

    CAS  Google Scholar 

  52. Kamlet M J, Adolph H G. The relationship of impact sensitivity with structure of organic high explosives. II. Polynitroaromatic explosives. Prop Explos Pyrotech, 1979, 4(2): 30–34

    Article  CAS  Google Scholar 

  53. Politzer P, Lane P. Comparison of density functional calculations of C-NO2, N-NO2 and C-NF2 dissociation energies. J Mol Struct (Theochem), 1996, 388: 51–55

    CAS  Google Scholar 

  54. Harris N J, Lammertsma K. Ab initio density functional computations of conformations and bond dissociation energies for hexahydro-1,3,5-trinitro-1,3,5-triazine. J Am Chem Soc, 1997, 119: 6583–6589

    Article  CAS  Google Scholar 

  55. Rice B M, Sahu S, Owens F J. Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules. J Mol Struct (Theochem), 2002, 583: 69–72

    Article  CAS  Google Scholar 

  56. Owens F J. Molecular orbital calculation of decomposition pathways of nitrocubanes and nitroazacubanes. J Mol Struct (Theochem), 1999, 460: 137–140

    Article  CAS  Google Scholar 

  57. Curtiss L A, Raghavachari K, Trucks G W, Pople J A. Gaussian-2 theory for molecular energies of first-and second-row compounds. J Chem Phys, 1991, 94: 7221–7230

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HeMing Xiao.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 10576030 and 10576016) and National 973 Project (Grant No. 61337)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, L., Gong, X., Ju, X. et al. Substituent effect on the molecular stability, group interaction, detonation performance, and thermolysis mechanism of nitroamino-substituted cyclopentanes and cyclohexanes. Sci. China Ser. B-Chem. 51, 1231–1245 (2008). https://doi.org/10.1007/s11426-008-0141-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0141-1

Keywords

Navigation