Skip to main content
Log in

Bilinear forms with trace functions over arbitrary sets and applications to Sato-Tate

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We prove non-trivial upper bounds for general bilinear forms with trace functions of bountiful sheaves, where the supports of two variables can be arbitrary subsets in Fp of suitable sizes. This essentially recovers the Pólya-Vinogradov range, and also applies to symmetric powers of Kloosterman sums and Frobenius traces of elliptic curves. In the case of hyper-Kloosterman sums, we can beat the Pólya-Vinogradov barrier by combining additive combinatorics with a deep result of Kowalski, Michel and Sawin (2017) on sum-products of Kloosterman sheaves. Two Sato-Tate distributions of Kloosterman sums and Frobenius traces of elliptic curves in sparse families are also concluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bag N, Shparlinski I E. Bounds on bilinear sums of Kloosterman sums. J Number Theory, 2023, 242: 102–111

    Article  MathSciNet  MATH  Google Scholar 

  2. Bilu Y. Structure of sets with small sumset. In: Structure Theory of Set Addition. Astérisque, vol. 258. Montrouge: Soc Math France, 1999, 77–108

    MATH  Google Scholar 

  3. Birch B J. How the number of points of an elliptic curve over a fixed prime field varies. J Lond Math Soc, 1968, 43: 57–60

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang M C. A polynomial bound in Freiman’s theorem. Duke Math J, 2002, 113: 399–419

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang M C. On a question of Davenport and Lewis and new character sum bounds in finite fields. Duke Math J, 2008, 145: 409–442

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen J R. On the distribution of almost primes in an interval. Sci Sinica, 1975, 18: 611–627

    MathSciNet  MATH  Google Scholar 

  7. Clozel L, Harris M, Taylor R. Automorphy for some ℓ-adic lifts of automorphic mod ℓ Galois representations. Publ Math Inst Hautes Études Sci, 2008, 108: 1–181

    Article  MathSciNet  MATH  Google Scholar 

  8. de la Bretèche R, Sha M, Shparlinski I E, Voloch J F. The Sato-Tate distribution in thin parametric families of elliptic curves. Math Z, 2018, 290: 831–855

    Article  MathSciNet  MATH  Google Scholar 

  9. Deligne P. La conjecture de Weil II. Publ Math Inst Hautes Études Sci, 1980, 52: 137–252

    Article  MathSciNet  MATH  Google Scholar 

  10. Fouvry É, Ganguly S, Kowalski E, Michel Ph. Gaussian distribution for the divisor function and Hecke eigenvalues in arithmetic progressions. Comment Math Helv, 2014, 89: 979–1014

    Article  MathSciNet  MATH  Google Scholar 

  11. Fouvry É, Kowalski E, Michel Ph. Algebraic trace functions over the primes. Duke Math J, 2014, 163: 1683–1736

    Article  MathSciNet  MATH  Google Scholar 

  12. Fouvry É, Kowalski E, Michel Ph. A study in sums of products. Philos Trans Roy Soc A, 2015, 373: 20140309

    Article  MathSciNet  MATH  Google Scholar 

  13. Fouvry É, Michel Ph. Sur certaines sommes d’exponentielles sur les nombres premiers. Ann Sci Éc Norm Supér, 1998, 31: 93–130

    Article  MathSciNet  MATH  Google Scholar 

  14. Fouvry É, Michel Ph, Rivat J, Sárközy A. On the pseudorandomness of the signs of Kloosterman sums. J Aust Math Soc, 2004, 77: 425–436

    Article  MathSciNet  MATH  Google Scholar 

  15. Freiman G. Foundations of a Structural Theory of Set Addition. Translations of Mathematical Monographs, vol. 37. Providence: Amer Math Soc, 1973

    MATH  Google Scholar 

  16. Harris M, Shepherd-Barron N, Taylor R. A family of Calabi-Yau varieties and potential automorphy. Ann of Math (2), 2010, 171: 779–813

    Article  MathSciNet  MATH  Google Scholar 

  17. Karatsuba A A. Sums of characters over prime numbers. Izv Akad Nauk SSSR Ser Mat, 1970, 34: 299–321 (in Russian); Izv Math, 1970, 4: 303–326 (in English)

    MathSciNet  Google Scholar 

  18. Katz N M. Sommes Exponentielles. Asterisque, vol. 79. Montrouge: Soc Math France, 1980

    MATH  Google Scholar 

  19. Katz N M. Gauss Sums, Kloosterman Sums, and Monodromy Groups. Annals of Mathematics Studies, vol. 116. Princeton: Princeton University Press, 1988

    Book  MATH  Google Scholar 

  20. Kowalski E, Michel Ph, Sawin W. Bilinear forms with Kloosterman sums and applications. Ann of Math (2), 2017, 186: 413–500

    Article  MathSciNet  MATH  Google Scholar 

  21. Kowalski E, Michel Ph, Sawin W. Stratification and averaging for exponential sums: Bilinear forms with generalized Kloosterman sums. Ann Sc Norm Super Pisa Cl Sci, 2020, 21: 1453`-1530

    MathSciNet  MATH  Google Scholar 

  22. Michel Ph. Autour de la conjecture de Sato-Tate pour les sommes de Kloosterman. I. Invent Math, 1995, 121: 61–78

    Article  MathSciNet  MATH  Google Scholar 

  23. Michel Ph. Rang moyen de familles de courbes elliptiques et lois de Sato-Tate. Monatsh Math, 1995, 120: 127–136

    Article  MathSciNet  MATH  Google Scholar 

  24. Ruzsa I. Generalized arithmetic progressions and sumsets. Acta Math Hungar, 1994, 65: 379–388

    Article  MathSciNet  MATH  Google Scholar 

  25. Sanders T. The structure theory of set addition revisited. Bull Amer Math Soc (N S), 2013, 50: 93–127

    Article  MathSciNet  MATH  Google Scholar 

  26. Schoen T. Near optimal bounds in Freiman’s theorem. Duke Math J, 2011, 158: 1–12

    Article  MathSciNet  MATH  Google Scholar 

  27. Shkredov I D. On asymptotic formulae in some sum-product questions. Tr Mosk Mat Obs, 2018, 79: 271–334 (in Russian); Trans Moscow Math Soc, 2018, 2018: 231–281 (in English)

    MathSciNet  MATH  Google Scholar 

  28. Shkredov I D. Modular hyperbolas and bilinear forms of Kloosterman sums. J Number Theory, 2021, 220: 182–211

    Article  MathSciNet  MATH  Google Scholar 

  29. Shparlinski I E. On sums of Kloosterman and Gauss sums. Trans Amer Math Soc, 2019, 371: 8679–8697

    Article  MathSciNet  MATH  Google Scholar 

  30. Taylor R. Automorphy for some ℓ-adic lifts of automorphic mod ℓ Galois representations. II. Publ Math Inst Hautes Études Sci, 2008, 108: 183–239

    Article  MathSciNet  MATH  Google Scholar 

  31. Vinogradov I M. Some theorems concerning the theory of primes. Mat Sbornik N S, 1937, 44: 179–195

    MATH  Google Scholar 

  32. Vinogradov I M. On the distribution of quadratic rests and non-rests of the form p + k to a prime modulus (in Russian). Mat Sbornik N S, 1938, 45: 311–319

    MATH  Google Scholar 

  33. Xi P. Gaussian distributions of Kloosterman sums: Vertical and horizontal. Ramanujan J, 2017, 43: 493–511

    Article  MathSciNet  MATH  Google Scholar 

  34. Xi P. Equidistributions of Jacobi sums. arXiv:1809.04286, 2018

  35. Xu J Y. Stratification for multiplicative character sums. Int Math Res Not IMRN, 2020, 2020: 2881–2917

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 12025106 and 11971370). I am very grateful to Bryce Kerr for letting me know the work of Shkredov [27] which yields an improved version of Theorem 1.2, and to Igor Shparlinski for pointing out the reference [1]. I also thank the referees for valuable comments and suggestions. It is my great honour to be invited to acknowledge the 50th anniversary of the detailed proof of Chen’s celebrated theorem on the Goldbach problem and the twin prime conjecture. I am very lucky that my academic career has been guided by Chen’s mathematics and spirits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xi.

Additional information

Professor Jingrun Chen in memoriam

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, P. Bilinear forms with trace functions over arbitrary sets and applications to Sato-Tate. Sci. China Math. 66, 2819–2834 (2023). https://doi.org/10.1007/s11425-022-2184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2184-9

Keywords

MSC(2020)

Navigation