Skip to main content
Log in

Gaps between prime numbers and tensor rank of multiplication in finite fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We present effective upper bounds on the symmetric bilinear complexity of multiplication in extensions of a base finite field \(\mathbb {F}_{p^2}\) of prime square order, obtained by combining estimates on gaps between prime numbers together with an optimal construction of auxiliary divisors for multiplication algorithms by evaluation-interpolation on curves. Most of this material dates back to a 2011 unpublished work of the author, but it still provides the best results on this topic at the present time. Then a few updates are given in order to take recent developments into account, including comparison with a similar work of Ballet and Zykin, generalization to classical bilinear complexity over \(\mathbb {F}_p\), and to short multiplication of polynomials, as well as a discussion of open questions on gaps between prime numbers or more generally values of certain arithmetic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Compared with (3), the (classical) bilinear complexity \(\mu _F(\mathcal {A})\) of \(\mathcal {A}\) over F is the (classical) tensor rank of \(T_\mathcal {A}\), i.e. the minimal length n of a decomposition \(T_\mathcal {A}=\sum _{1\le i\le n}\alpha _i\otimes \beta _i\otimes w_i\) of \(T_\mathcal {A}\) as a sum of n elementary tensors in \(\mathcal {A}^\vee \otimes \mathcal {A}^\vee \otimes \mathcal {A}\), where now \(\alpha _i,\beta _i\in \mathcal {A}^\vee \) are allowed to be different; equivalent definitions similiar to (1) or (2) can be given likewise.

References

  1. Baker R.C., Harman G., Pintz J.: The difference between consecutive primes, II. Proc. London Math. Soc. 83, 532–562 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  2. Ballet S.: Curves with many points and multiplication complexity in any extension of \(\mathbb{F}_q\). Finite Fields Appl. 5, 364–377 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  3. Ballet S.: Low increasing tower of algebraic function fields and bilinear complexity of multiplication in any extension of \(\mathbb{F}_q\). Finite Fields Appl. 9, 472–478 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  4. Ballet S.: On the tensor rank of the multiplication in the finite fields. J. Number Theory 128, 1795–1806 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  5. Ballet S., Rolland R.: Multiplication algorithm in a finite field and tensor rank of the multiplication. J. Algebra 272, 173–185 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  6. Ballet S., Zykin A.: Dense families of modular curves, prime numbers and uniform symmetric tensor rank of multiplication in certain finite fields, preprint (June 2017). arXiv:1706.09139.

  7. Brocket R.W., Dobkin D.: On the optimal evaluation of a set of bilinear forms. Lin. Alg. Appl. 19, 624–628 (1978).

    Article  MathSciNet  Google Scholar 

  8. Bshouty N.: A lower bound for the multiplication of polynomials modulo a polynomial. Inform. Process. Lett. 41, 321–326 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  9. Cascudo I.: On asymptotically good strongly multiplicative linear secret sharing. Ph.D. dissertation. University of Oviedo (2010).

  10. Cascudo I., Cramer R., Xing C.: Torsion limits and Riemann-Roch systems for function fields and applications. IEEE Trans. Inform. Theory 60, 3871–3888 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  11. Cenk M., Özbudak F.: On multiplication in finite fields. J. Complex. 26, 172–186 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  12. Chudnovsky D.V., Chudnovsky G.V.: Algebraic complexities and algebraic curves over finite fields. Proc. Natl. Acad. Sci. USA 84, 1739–1743 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  13. Chudnovsky D.V., Chudnovsky G.V.: Algebraic complexities and algebraic curves over finite fields. J. Complex. 4, 285–316 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  14. Cramer H.: On the order of magnitude of the difference between consecutive prime numbers. Acta Arith. 2, 23–46 (1936).

    Article  MATH  Google Scholar 

  15. Dudek A.: An explicit result for primes between cubes. Funct. Approx. Comment. Math. 55, 177–197 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  16. Dusart P.: Estimates of some functions over primes without R.H., preprint (February 2010). arXiv:1002.0442.

  17. Ford K.: The distribution of totients. Ramanujan J. 2, 67–151 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  18. Kadiri H.: Short effective intervals containing primes in arithmetic progressions and the seven cubes problem. Math. Comput. 77, 1733–1748 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  19. Lempel A., Seroussi G., Winograd S.: On the complexity of multiplication in finite fields. Theoret. Comput. Sci. 22, 285–296 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  20. Lempel A., Winograd S.: A new approach to error-correcting codes. IEEE Trans. Inform. Theory 23, 503–508 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  21. Miyake T.: Modular Forms. Springer, Tokyo (1989).

    Book  MATH  Google Scholar 

  22. Ramaré O., Saouter Y.: Short effective intervals containing primes. J. Number Theory 98, 10–33 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  23. Randriambololona H.: \((2,1)\)-separating systems beyond the probabilistic bound. Israel J. Math. 195, 171–186 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  24. Randriambololona H.: Diviseurs de la forme \(2D-G\) sans sections et rang de la multiplication dans les corps finis, preprint (March 2011). arXiv:1103.4335.

  25. Randriambololona H.: Bilinear complexity of algebras and the Chudnovsky–Chudnovsky interpolation method. J. Complex. 28, 489–517 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  26. Randriambololona H.: “On products and powers of linear codes under componentwise multiplication. In: Algorithmic arithmetic, geometry, and coding theory, Contemporary Mathematics, vol. 637. American Mathematical Society, pp. 3–78 (2015).

  27. Schoenfeld L.: Sharper bounds for the Chebyshev functions \(\theta (x)\) and \(\psi (x)\), II. Math. Comput. 30, 337–360 (1976).

    MathSciNet  MATH  Google Scholar 

  28. Shokrollahi M.A.: Optimal algorithms for multiplication in certain finite fields using elliptic curves. SIAM J. Comput. 21, 1193–1198 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  29. Shparlinski I., Tsfasman M., Vladut S.: Curves with many pointsand multiplication in finite fields. In: Stichtenoth H., Tsfasman M.A. (eds.) Coding Theory and Algebraic Geometry (Luminy, 1991). Lecture Notes in Mathematics, vol. 1518, pp. 145–169. Springer, Berlin (1992).

    Chapter  Google Scholar 

  30. Stichtenoth H.: Algebraic Function Fields and Codes, Universitext. Springer, Berlin (1993).

    MATH  Google Scholar 

  31. Tsfasman M.A., Vladut S.G.: Algebraic-Geometric Codes. Kluwer Academic Publishers, Norwell (1991).

    Book  MATH  Google Scholar 

  32. Winograd S.: Some bilinear forms whose multiplicative complexity depends on the field of constants. Math. Syst. Theory 10, 169–180 (1977).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

H. Randriam was supported by ANR-14-CE25-0015 Project Gardio and ANR-15-CE39-0013 Project Manta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues Randriam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randriam, H. Gaps between prime numbers and tensor rank of multiplication in finite fields. Des. Codes Cryptogr. 87, 627–645 (2019). https://doi.org/10.1007/s10623-018-0584-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0584-0

Keywords

Mathematics Subject Classification

Navigation