Skip to main content
Log in

Double stabilizations and convergence analysis of a second-order linear numerical scheme for the nonlocal Cahn-Hilliard equation

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study a second-order accurate and linear numerical scheme for the nonlocal Cahn-Hilliard equation. The scheme is established by combining a modified Crank-Nicolson approximation and the Adams-Bashforth extrapolation for the temporal discretization, and by applying the Fourier spectral collocation to the spatial discretization. In addition, two stabilization terms in different forms are added for the sake of the numerical stability. We conduct a complete convergence analysis by using the higher-order consistency estimate for the numerical scheme, combined with the rough error estimate and the refined estimate. By regarding the numerical solution as a small perturbation of the exact solution, we are able to justify the discrete bound of the numerical solution, as a result of the rough error estimate. Subsequently, the refined error estimate is derived to obtain the optimal rate of convergence, following the established bound of the numerical solution. Moreover, the energy stability is also rigorously proved with respect to a modified energy. The proposed scheme can be viewed as the generalization of the second-order scheme presented in an earlier work, and the energy stability estimate has greatly improved the corresponding result therein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M, Mao Z P. Analysis and approximation of a fractional Cahn-Hilliard equation. SIAM J Numer Anal, 2017, 55: 1689–1718

    Article  MathSciNet  Google Scholar 

  2. Archer A J, Evans R. Dynamical density functional theory and its application to spinodal decomposition. J Chem Phys, 2004, 121: 4246–4254

    Article  Google Scholar 

  3. Archer A J, Rauscher M. Dynamical density functional theory for interacting Brownian particles: Stochastic or deterministic? J Phys A Math Gen, 2004, 37: 9325–9333

    Article  MathSciNet  Google Scholar 

  4. Baskaran A, Lowengrub J S, Wang C, et al. Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J Numer Anal, 2013, 51: 2851–2873

    Article  MathSciNet  Google Scholar 

  5. Bates P W. On some nonlocal evolution equations arising in materials science. In: Nonlinear Dynamics and Evolution Equations. Fields Institute Communications, vol. 48. Providence: Amer Math Soc, 2006, 13–52

    Google Scholar 

  6. Bates P W, Brown S, Han J L. Numerical analysis for a nonlocal Allen-Cahn equation. Int J Numer Anal Model, 2009, 6: 33–49

    MathSciNet  Google Scholar 

  7. Bates P W, Han J L. The Neumann boundary problem for a nonlocal Cahn-Hilliard equation. J Differential Equations, 2005, 212: 235–277

    Article  MathSciNet  Google Scholar 

  8. Bates P W, Han J L. The Dirichlet boundary problem for a nonlocal Cahn-Hilliard equation. J Math Anal Appl, 2005, 311: 289–312

    Article  MathSciNet  Google Scholar 

  9. Bates P W, Han J L, Zhao G Y. On a nonlocal phase-field system. Nonlinear Anal, 2006, 64: 2251–2278

    Article  MathSciNet  Google Scholar 

  10. Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys, 1958, 28: 258–267

    Article  Google Scholar 

  11. Cheng K L, Feng W Q, Wang C, et al. An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation. J Comput Appl Math, 2019, 362: 574–595

    Article  MathSciNet  Google Scholar 

  12. Cheng K L, Wang C, Wise S M, et al. A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method. J Sci Comput, 2016, 69: 1083–1114

    Article  MathSciNet  Google Scholar 

  13. Dai S B, Du Q. Computational studies of coarsening rates for the Cahn-Hilliard equation with phase-dependent diffusion mobility. J Comput Phys, 2016, 310: 85–108

    Article  MathSciNet  Google Scholar 

  14. Diegel A E, Wang C, Wang X M, et al. Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system. Numer Math, 2017, 137: 495–534

    Article  MathSciNet  Google Scholar 

  15. Diegel A E, Wang C, Wise S M. Stability and convergence of a second order mixed finite element method for the Cahn-Hilliard equation. IMA J Numer Anal, 2016, 36: 1867–1897

    Article  MathSciNet  Google Scholar 

  16. Du Q, Gunzburger M, Lehoucq R B, et al. Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev, 2012, 54: 667–696

    Article  MathSciNet  Google Scholar 

  17. Du Q, Ju L L, Li X, et al. Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation. J Comput Phys, 2018, 363: 39–54

    Article  MathSciNet  Google Scholar 

  18. Du Q, Ju L L, Li X, et al. Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation. SIAM J Numer Anal, 2019, 57: 875–898

    Article  MathSciNet  Google Scholar 

  19. Du Q, Nicolaides R A. Numerical analysis of a continuum model of a phase transition. SIAM J Numer Anal, 1991, 28: 1310–1322

    Article  MathSciNet  Google Scholar 

  20. Du Q, Yang J. Asymptotically compatible Fourier spectral approximations of nonlocal Allen-Cahn equations. SIAM J Numer Anal, 2016, 54: 1899–1919

    Article  MathSciNet  Google Scholar 

  21. Duan C H, Chen W B, Liu C, et al. Convergence analysis of structure-preserving numerical methods for nonlinear Fokker-Planck equations with nonlocal interactions. Math Methods Appl Sci, 2022, 45: 3764–3781

    Article  MathSciNet  Google Scholar 

  22. Duan C H, Liu C, Wang C, et al. Convergence analysis of a numerical scheme for the porous medium equation by an energetic variational approach. Numer Math Theory Methods Appl, 2020, 13: 63–80

    Article  MathSciNet  Google Scholar 

  23. E W, Liu J-G. Projection method I: Convergence and numerical boundary layers. SIAM J Numer Anal, 1995, 32: 1017–1057

    Article  MathSciNet  Google Scholar 

  24. Eyre D J. Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution, vol. 529. Warrendale: Materials Research Society, 1998, 39–46

    Google Scholar 

  25. Fife P. Some nonclassical trends in parabolic and parabolic-like evolutions. In: Trends in Nonlinear Analysis. Berlin: Springer, 2003, 153–191

    Chapter  Google Scholar 

  26. Gottlieb S, Tone F, Wang C, et al. Long time stability of a classical efficient scheme for two-dimensional Navier-Stokes equations. SIAM J Numer Anal, 2012, 50: 126–150

    Article  MathSciNet  Google Scholar 

  27. Gottlieb S, Wang C. Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers’ equation. J Sci Comput, 2012, 53: 102–128

    Article  MathSciNet  Google Scholar 

  28. Guan Z, Lowengrub J S, Wang C. Convergence analysis for second-order accurate schemes for the periodic nonlocal Allen-Cahn and Cahn-Hilliard equations. Math Methods Appl Sci, 2017, 40: 6836–6863

    Article  MathSciNet  Google Scholar 

  29. Guan Z, Lowengrub J S, Wang C, et al. Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations. J Comput Phys, 2014, 277: 48–71

    Article  MathSciNet  Google Scholar 

  30. Guan Z, Wang C, Wise S M. A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation. Numer Math, 2014, 128: 377–406

    Article  MathSciNet  Google Scholar 

  31. Guo J, Wang C, Wise S M, et al. An H2 convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation. Commun Math Sci, 2016, 14: 489–515

    Article  MathSciNet  Google Scholar 

  32. Guo J, Wang C, Wise S M, et al. An improved error analysis for a second-order numerical scheme for the Cahn-Hilliard equation. J Comput Appl Math, 2021, 388: 113300

    Article  MathSciNet  Google Scholar 

  33. Hornthrop D J, Katsoulakis M A, Vlachos D G. Spectral methods for mesoscopic models of pattern formation. J Comput Phys, 2001, 173: 364–390

    Article  MathSciNet  Google Scholar 

  34. Ju L L, Li X, Qiao Z H. Generalized SAV-exponential integrator schemes for Allen-Cahn type gradient flows. SIAM J Numer Anal, 2022, 60: 1905–1931

    Article  MathSciNet  Google Scholar 

  35. Li D, Qiao Z H. On the stabilization size of semi-implicit Fourier-spectral methods for 3D Cahn-Hilliard equations. Commun Math Sci, 2017, 15: 1489–1506

    Article  MathSciNet  Google Scholar 

  36. Li D, Qiao Z H. On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations. J Sci Comput, 2017, 70: 301–341

    Article  MathSciNet  Google Scholar 

  37. Li D, Qiao Z H, Tang T. Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations. SIAM J Numer Anal, 2016, 54: 1653–1681

    Article  MathSciNet  Google Scholar 

  38. Li X, Qiao Z H, Wang C. Convergence analysis for a stabilized linear semi-implicit numerical scheme for the nonlocal Cahn-Hilliard equation. Math Comp, 2021, 90: 171–188

    Article  MathSciNet  Google Scholar 

  39. Li X, Qiao Z H, Wang C. Stabilization parameter analysis of a second-order linear numerical scheme for the nonlocal Cahn-Hilliard equation. IMA J Numer Anal, 2023, in press

  40. Li X, Qiao Z H, Zhang H. An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation. Sci China Math, 2016, 59: 1815–1834

    Article  MathSciNet  Google Scholar 

  41. Li X L, Shen J. Efficient linear and unconditionally energy stable schemes for the modified phase field crystal equation. Sci China Math, 2022, 65: 2201–2218

    Article  MathSciNet  Google Scholar 

  42. Liao H-L, Song X H, Tang T, et al. Analysis of the second-order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection. Sci China Math, 2021, 64: 887–902

    Article  MathSciNet  Google Scholar 

  43. Liao H-L, Zhang Z M. Analysis of adaptive BDF2 scheme for diffusion equations. Math Comp, 2021, 90: 1207–1226

    Article  MathSciNet  Google Scholar 

  44. Liu C, Wang C, Wise S M, et al. A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system. Math Comp, 2021, 90: 2071–2106

    Article  MathSciNet  Google Scholar 

  45. McLachlan R I, Quispel G R W, Robidoux N. Geometric integration using discrete gradients. Philos Trans Roy Soc A, 1999, 357: 1021–1045

    Article  MathSciNet  Google Scholar 

  46. Meng X, Qiao Z H, Wang C, et al. Artificial regularization parameter analysis for the no-slope-selection epitaxial thin film model. CSIAM Trans Appl Math, 2020, 1: 441–462

    Article  Google Scholar 

  47. Qiao Z H, Zhang Z R, Tang T. An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J Sci Comput, 2011, 33: 1395–1414

    Article  MathSciNet  Google Scholar 

  48. Samelson R, Temam R, Wang C, et al. Surface pressure Poisson equation formulation of the primitive equations: Numerical schemes. SIAM J Numer Anal, 2003, 41: 1163–1194

    Article  MathSciNet  Google Scholar 

  49. Shen J, Wang C, Wang X M, et al. Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy. SIAM J Numer Anal, 2012, 50: 105–125

    Article  MathSciNet  Google Scholar 

  50. Shen J, Xu J, Yang J. A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev, 2019, 61: 474–506

    Article  MathSciNet  Google Scholar 

  51. Shen J, Yang X F. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin Dyn Syst, 2010, 28: 1669–1691

    Article  MathSciNet  Google Scholar 

  52. Song F Y, Xu C J, Karniadakis G E. A fractional phase-field model for two-phase flows with tunable sharpness: Algorithms and simulations. Comput Methods Appl Mech Engrg, 2016, 305: 376–404

    Article  MathSciNet  Google Scholar 

  53. Tang T, Yu H J, Zhou T. On energy dissipation theory and numerical stability for time-fractional phase-field equations. SIAM J Sci Comput, 2019, 41: A3757–A3778

    Article  MathSciNet  Google Scholar 

  54. Temam R. Navier-Stokes Equations: Theory and Numerical Analysis. Providence: Amer Math Soc, 2001

    Google Scholar 

  55. Wang C, Liu J-G, Johnston H. Analysis of a fourth order finite difference method for the incompressible Boussinesq equations. Numer Math, 2004, 97: 555–594

    Article  MathSciNet  Google Scholar 

  56. Wang C, Wang X M, Wise S M. Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin Dyn Syst, 2010, 28: 405–423

    Article  MathSciNet  Google Scholar 

  57. Wang L, Yu H J. Convergence analysis of an unconditionally energy stable linear Crank-Nicolson scheme for the Cahn-Hilliard equation. J Math Study, 2018, 51: 89–114

    Article  MathSciNet  Google Scholar 

  58. Wang L, Yu H J. On efficient second order stabilized semi-implicit schemes for the Cahn-Hilliard phase-field equation. J Sci Comput, 2018, 77: 1185–1209

    Article  MathSciNet  Google Scholar 

  59. Wang L, Yu H J. Energy-stable second-order linear schemes for the Allen-Cahn phase-field equation. Commun Math Sci, 2019, 17: 609–635

    Article  MathSciNet  Google Scholar 

  60. Wang L, Yu H J. An energy stable linear diffusive Crank-Nicolson scheme for the Cahn-Hilliard gradient flow. J Comput Appl Math, 2020, 377: 112880

    Article  MathSciNet  Google Scholar 

  61. Wang L D, Chen W B, Wang C. An energy-conserving second order numerical scheme for nonlinear hyperbolic equation with an exponential nonlinear term. J Comput Appl Math, 2015, 280: 347–366

    Article  MathSciNet  Google Scholar 

  62. Wise S M, Wang C, Lowengrub J S. An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J Numer Anal, 2009, 47: 2269–2288

    Article  MathSciNet  Google Scholar 

  63. Xu C J, Tang T. Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J Numer Anal, 2006, 44: 1759–1779

    Article  MathSciNet  Google Scholar 

  64. Yan Y, Chen W B, Wang C, et al. A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation. Commun Comput Phys, 2018, 23: 572–602

    Article  MathSciNet  Google Scholar 

  65. Yang X F, Zhang G D. Convergence analysis for the invariant energy quadratization (IEQ) schemes for solving the Cahn-Hilliard and Allen-Cahn equations with general nonlinear potential. J Sci Comput, 2020, 82: 55

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese Academy of Sciences (CAS) Academy of Mathematics and Systems Science (AMSS) and the Hong Kong Polytechnic University (PolyU) Joint Laboratory of Applied Mathematics. The first author was supported by the Hong Kong Research Council General Research Fund (Grant No. 15300821) and the Hong Kong Polytechnic University Grants (Grant Nos. 1-BD8N, 4-ZZMK and 1-ZVWW). The second author was supported by the Hong Kong Research Council Research Fellow Scheme (Grant No. RFS2021-5S03) and General Research Fund (Grant No. 15302919). The third author was supported by US National Science Foundation (Grant No. DMS-2012269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Qiao, Z. & Wang, C. Double stabilizations and convergence analysis of a second-order linear numerical scheme for the nonlocal Cahn-Hilliard equation. Sci. China Math. 67, 187–210 (2024). https://doi.org/10.1007/s11425-022-2036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2036-8

Keywords

MSC(2020)

Navigation