Skip to main content
Log in

Singular limits for the Navier-Stokes-Poisson equations of the viscous plasma with the strong density boundary layer

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The quasi-neutral limit of the Navier-Stokes-Poisson system modeling a viscous plasma with vanishing viscosity coefficients in the half-space \(\mathbb{R}_+^3\) is rigorously proved under a Navier-slip boundary condition for velocity and the Dirichlet boundary condition for electric potential. This is achieved by establishing the nonlinear stability of the approximation solutions involving the strong boundary layer in density and electric potential, which comes from the breakdown of the quasi-neutrality near the boundary, and dealing with the difficulty of the interaction of this strong boundary layer with the weak boundary layer of the velocity field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Beirão da Veiga H, Crispo F. Sharp inviscid limit results under Navier type boundary conditions. An Lp theory. J Math Fluid Mech, 2010, 12: 397–411

    Article  MathSciNet  MATH  Google Scholar 

  2. Clopeau T, Mikelić A, Robert R. On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions. Nonlinearity, 1998, 11: 1625–1636

    Article  MathSciNet  MATH  Google Scholar 

  3. Cordier S, Grenier E. Quasineutral limit of an Euler-Poisson system arising from plasma physics. Comm Partial Differential Equations, 2000, 25: 1099–1113

    Article  MathSciNet  MATH  Google Scholar 

  4. Crispel P, Degond P, Vignal M H. A plasma expansion model based on the full Euler-Poisson system. Math Models Methods Appl Sci, 2007, 17: 1129–1158

    Article  MathSciNet  MATH  Google Scholar 

  5. Donatelli D, Feireisl E, Novotný A. Scale analysis of a hydrodynamic model of plasma. Math Models Methods Appl Sci, 2015, 25: 371–394

    Article  MathSciNet  MATH  Google Scholar 

  6. Duan Q, Li H L. Global existence of weak solution for the compressible Navier-Stokes-Poisson system for gaseous stars. J Differential Equations, 2015, 259: 5302–5330

    Article  MathSciNet  MATH  Google Scholar 

  7. Fei M W, Tao T, Zhang Z F. On the zero-viscosity limit of the Navier-Stokes equations in ℝ 3+ without analyticity. J Math Pures Appl (9), 2018, 112: 170–229

    Article  MathSciNet  MATH  Google Scholar 

  8. Feireisl E, Zhang P. Quasi-neutral limit for a model of viscous plasma. Arch Ration Mech Anal, 2010, 197: 271–295

    Article  MathSciNet  MATH  Google Scholar 

  9. Feldman M, Ha S-Y, Slemrod M. A geometric level-set formulation of a plasma-sheath interface. Arch Ration Mech Anal, 2005, 178: 81–123

    Article  MathSciNet  MATH  Google Scholar 

  10. Gérard-Varet D, Han-Kwan D, Rousset F. Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries. Indiana Univ Math J, 2013, 62: 359–402

    Article  MathSciNet  MATH  Google Scholar 

  11. Gérard-Varet D, Han-Kwan D, Rousset F. Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries II. J Ec polytech Math, 2014, 1: 343–386

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo Y, Iyer S. Steady Prandtl layer expansions with external forcing. arXiv:1810.06662, 2018

  13. Guo Y, Iyer S. Regularity and expansion for steady Prandtl equations. Comm Math Phys, 2021, 382: 1403–1447

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo Y, Nguyen T. Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate. Ann PDE, 2017, 3: 10

    Article  MathSciNet  MATH  Google Scholar 

  15. Ha S-Y, Slemrod M. Global existence of plasma ion-sheaths and their dynamics. Comm Math Phys, 2003, 238: 149–186

    Article  MathSciNet  MATH  Google Scholar 

  16. Han-Kwan D. Quasineutral limit of the Vlasov-Poisson system with massless electrons. Comm Partial Differential Equations, 2011, 36: 1385–1425

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoff D. Local solutions of a compressible flow problem with Navier boundary conditions in general three-dimensional domains. SIAM J Math Anal, 2012, 44: 633–650

    Article  MathSciNet  MATH  Google Scholar 

  18. Iftimie D, Planas G. Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions. Nonlinearity, 2006, 19: 899–918

    Article  MathSciNet  MATH  Google Scholar 

  19. Iftimie D, Sueur F. Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions. Arch Ration Mech Anal, 2011, 199: 145–175

    Article  MathSciNet  MATH  Google Scholar 

  20. Ju Q C, Li F C, Li H L. The quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general initial data. J Differential Equations, 2009, 247: 203–224

    Article  MathSciNet  MATH  Google Scholar 

  21. Ju Q C, Xu X. Quasi-neutral and zero-viscosity limits of Navier-Stokes-Poisson equations in the half-space. J Differential Equations, 2018, 264: 867–896

    Article  MathSciNet  MATH  Google Scholar 

  22. Kelliher J P. Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J Math Anal, 2006, 38: 210–232

    Article  MathSciNet  MATH  Google Scholar 

  23. Kobayashi T, Suzuki T. Weak solutions to the Navier-Stokes-Poisson equation. Adv Math Sci Appl, 2008, 18: 141–168

    MathSciNet  MATH  Google Scholar 

  24. Li Y, Ju Q C, Xu W Q. Quasi-neutral limit of the full Navier-Stokes-Fourier-Poisson system. J Differential Equations, 2015, 258: 3661–3687

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu C J, Xie F, Yang T. Justification of Prandtl ansatz for MHD boundary layer. SIAM J Math Anal, 2019, 51: 2748–2791

    Article  MathSciNet  MATH  Google Scholar 

  26. Maekawa Y. On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Comm Pure Appl Math, 2014, 67: 1045–1128

    Article  MathSciNet  MATH  Google Scholar 

  27. Masmoudi N, Rousset F. Uniform regularity for the Navier-Stokes equation with Navier boundary condition. Arch Ration Mech Anal, 2012, 203: 529–575

    Article  MathSciNet  MATH  Google Scholar 

  28. Nguyen T T, Nguyen T T. The inviscid limit of Navier-Stokes equations for analytic data on the half-space. Arch Ration Mech Anal, 2018, 230: 1103–1129

    Article  MathSciNet  MATH  Google Scholar 

  29. Paddick M. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete Contin Dyn Syst, 2016, 36: 2673–2709

    Article  MathSciNet  MATH  Google Scholar 

  30. Peng Y J, Wang Y G. Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows. Nonlinearity, 2004, 17: 835–849

    Article  MathSciNet  MATH  Google Scholar 

  31. Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm Math Phys, 1998, 192: 433–461

    Article  MathSciNet  MATH  Google Scholar 

  32. Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution. Comm Math Phys, 1998, 192: 463–491

    Article  MathSciNet  MATH  Google Scholar 

  33. Slemrod M, Sternberg N. Quasi-neutral limit for Euler-Poisson system. J Nonlinear Sci, 2001, 11: 193–209

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang S. Quasineutral limit of Euler-Poisson system with and without viscosity. Comm Partial Differential Equations, 2004, 29: 419–456

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang S, Jiang S. The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations. Comm Partial Differential Equations, 2006, 31: 571–591

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang Y. Uniform regularity and vanishing dissipation limit for the full compressible Navier-Stokes system in three dimensional bounded domain. Arch Ration Mech Anal, 2016, 221: 1345–1415

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang Y, Xin Z P, Yong Y. Uniform regularity and vanishing viscosity limit for the compressible Navier-Stokes with general Navier-slip boundary conditions in three-dimensional domains. SIAM J Math Anal, 2015, 47: 4123–4191

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang Y G, Williams M. The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions. Ann Inst Fourier (Grenoble), 2012, 62: 2257–2314

    Article  MathSciNet  MATH  Google Scholar 

  39. Xiao Y L, Xin Z P. On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm Pure Appl Math, 2007, 60: 1027–1055

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang Y H, Tan Z. On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow. Math Methods Appl Sci, 2007, 30: 305–329

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Qiangchang Ju was supported by National Natural Science Foundation of China (Grant Nos. 12131007 and 12070144). Tao Luo was supported by a General Research Fund of Research Grants Council (Hong Kong) (Grant No. 11306117). Xin Xu was supported by National Natural Science Foundation of China (Grant No. 12001506) and Natural Science Foundation of Shandong Province (Grant No. ZR2020QA014). The work of Qiangchang Ju and Xin Xu was supported by the Israel Science Foundation-National Natural Science Foundation of China Joint Research Program (Grant No. 11761141008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, Q., Luo, T. & Xu, X. Singular limits for the Navier-Stokes-Poisson equations of the viscous plasma with the strong density boundary layer. Sci. China Math. 66, 1495–1528 (2023). https://doi.org/10.1007/s11425-022-2008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2008-8

Keywords

MSC(2020)

Navigation