Skip to main content
Log in

Quasi-Neutral Limit for a Model of Viscous Plasma

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We perform a rigorous analysis of the quasi-neutral limit for a model of viscous plasma represented by the Navier–Stokes–Poisson system of equations. It is shown that the limit problem is the Navier–Stokes system describing a barotropic fluid flow, with the pressure augmented by a component related to the nonlinearity in the original Poisson equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besse C., Degond P., Deluzet F., Claudel J., Gallice G., Tessieras C.: A model hierarchy for ionospheric plasma modeling. Math. Models Methods Appl. Sci. 14(3), 393–415 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bogovskii, M.E.: Solution of some vector analysis problems connected with operators div and grad. Trudy Sem. S.L. Sobolev 80(1), 5–40 (1980) (in Russian)

  3. Brenier, Y.: Comparaison du régime hydrostatique des fluides incompressibles non-visqueux et du régime quasineutre des plasmas. Trends in applications of mathematics to mechanics (Nice 1998). In: CRC Monogr. Surv. Pure Appl. Math., Vol. 106. Chapman & Hall, Boca Raton, 285–292, 2000

  4. Brenier Y., Mauser N.J., Mauser N.J., Mauser N.J.: Sur quelques limites de la physique des particules chargées vers la (magnéto)hydrodynamique. C. R. Math. Acad. Sci. Paris 334(3), 239–244 (2002)

    MATH  MathSciNet  Google Scholar 

  5. Bresch D., Desjardins B., Ducomet B.: Quasi-neutral limit for a viscous capillary model of plasma. Ann. Inst. H. Poincar Anal. Non Linaire 22, 1–9 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Carnahan N.F., Starling K.E.: Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635–636 (1969)

    Article  ADS  Google Scholar 

  7. Choquet I., Degond P., Lucquin-Desreux B.: A hierarchy of diffusion models for partially ionized plasmas. Discrete Contin. Dyn. Syst. Ser. B 8(4), 735–772 (2007)

    MATH  MathSciNet  Google Scholar 

  8. Cordier S., Grenier E.: Quasineutral limit of an Euler-Poisson system arising from plasma physics. Comm. Partial Differ. Equ. 25(5–6), 1099–1113 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Donatelli D., Marcati P.: A quasineutral type limit for the Navier–Stokes–Poisson system with large data. Nonlinearity 21(1), 135–148 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Ducomet B., Feireisl E., Petzeltová H., Straškraba I.: Global in time weak solutions for compressible barotropic self-gravitating fluids. Discrete Contin. Dyn. Syst. 11, 113–130 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Feireisl E.: Compressible Navier–Stokes equations with a non-monotone pressure law. J. Differ. Equ. 184, 97–108 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Feireisl E., Petzeltová H.: On integrability up to the boundary of the weak solutions of the Navier–Stokes equations of compressible flow. Comm. Partial Differ. Equ. 25(3–4), 755–767 (2000)

    Article  MATH  Google Scholar 

  14. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, I. Springer-Verlag, New York (1994)

    Google Scholar 

  15. Gasser I., Hsiao L., Markowich P.A., Wang S.: Quasi-neutral limit of a nonlinear drift diffusion model for semiconductors. J. Math. Anal. Appl. 268(1), 184–199 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Geissert, M., Heck, H., Hieber, M.: On the equation div u = g and Bogovskiĭ’s operator in Sobolev spaces of negative order. In: Partial Differential Equations and Functional Analysis, Oper. Theory Adv. Appl., Vol. 168. Birkhäuser, Basel, 113–121, 2006

  17. Jiang S., Zhang P.: On spherically symmetric solutions of the compressible isentropic Navier–Stokes equations. Commun. Math. Phys. 215, 559–581 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Jüngel A., Peng Y.-J.: A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17(1), 83–118 (2000)

    Article  MATH  Google Scholar 

  19. Jüngel A., Peng Y.-J.: A hierarchy of hydrodynamic models for plasmas. Quasi-neutral limits in the drift-diffusion equations. Asymptot. Anal. 28(1), 49–73 (2001)

    MATH  MathSciNet  Google Scholar 

  20. Lions, P.-L.: Mathematical Topics in Fluid Dynamics. Compressible Models, Vol. 2. Oxford Science Publication, Oxford, 1998

  21. Nirenberg L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa (3) 20, 733–737 (1966)

    MATH  MathSciNet  Google Scholar 

  22. Wang S., Jiang S.: The convergence of the Navier–Stokes–Poisson system to the incompressible Euler equations. Comm. Partial Differ. Equ. 31(4–6), 571–591 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Feireisl.

Additional information

Communicated by W. E

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feireisl, E., Zhang, P. Quasi-Neutral Limit for a Model of Viscous Plasma. Arch Rational Mech Anal 197, 271–295 (2010). https://doi.org/10.1007/s00205-010-0317-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0317-7

Keywords

Navigation