Skip to main content
Log in

The Busemann-Petty problem on entropy of log-concave functions

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The Busemann-Petty problem asks whether symmetric convex bodies in the Euclidean space ℝnwith smaller central hyperplane sections necessarily have smaller volumes. The solution has been completed and the answer is affirmative if n ⩽ 4 and negative if n ⩾ 5. In this paper, we investigate the Busemann-Petty problem on entropy of log-concave functions: for even log-concave functions f and g with finite positive integrals in ℝn, if the marginal \(\int_{{\mathbb{R}^n} \cap H} {f(x)dx} \) of f is smaller than the marginal \(\int_{{\mathbb{R}^n} \cap H} {g(x)dx} \) of g for every hyperplane H passing through the origin, is the entropy Ent(f) of f bigger than the entropy Ent(g) of g? The Busemann-Petty problem on entropy of log-concave functions includes the Busemann-Petty problem, and hence its answer is negative when n ⩾ 5. For 2 ⩽ n ⩽ 4, we give a positive answer to the Busemann-Petty problem on entropy of log-concave functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso-Gutiérrez D, Merino B G, Jiménez C H, et al. Rogers-Shephard inequality for log-concave functions. J Funct Anal, 2016, 271: 3269–3299

    Article  MathSciNet  MATH  Google Scholar 

  2. Alonso-Gutiérrez D, Merino B G, Jiménez C H, et al. John’s ellipsoid and the integral ratio of a log-concave function. J Geom Anal, 2018, 28: 1182–1201

    Article  MathSciNet  MATH  Google Scholar 

  3. Artstein-Avidan S, Klartag B, Milman V. The Santaló point of a function, and a functional form of Santaló inequality. Mathematika, 2004, 51: 33–48

    Article  MathSciNet  MATH  Google Scholar 

  4. Artstein-Avidan S, Klartag B, Schütt C, et al. Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality. J Funct Anal, 2012, 262: 4181–4204

    Article  MathSciNet  MATH  Google Scholar 

  5. Artstein-Avidan S, Milman V. The concept of duality in convex analysis, and the characterization of the Legendre transform. Ann of Math (2), 2009, 169: 661–674

    Article  MathSciNet  MATH  Google Scholar 

  6. Ball K. Logarithmically concave functions and sections of convex sets in ℝn. Studia Math, 1988, 88: 69–84

    Article  MathSciNet  MATH  Google Scholar 

  7. Ball K. Some remarks on the geometry of convex sets. In: Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1317. Berlin-Heidelberg: Springer, 1988, 224–231

    Chapter  Google Scholar 

  8. Bourgain J. On the Busemann-Petty problem for perturbations of the ball. Geom Funct Anal, 1991, 1: 1–13

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgain J, Zhang G. On a generalization of the Busemann-Petty problem. In: Convex Geometric Analysis. Mathematical Sciences Research Institute Publications, vol. 34. Cambridge: Cambridge University Press, 1999, 65–76

    Google Scholar 

  10. Brazitikos S, Giannopoulos A, Valettas P, et al. Geometry of Isotropic Convex Bodies. Mathematical Surveys and Monographs, vol. 196. Providence: Amer Math Soc, 2014

    Book  MATH  Google Scholar 

  11. Busemann H. Volumes and areas of cross-sections. Amer Math Monthly, 1960, 67: 248–250

    MathSciNet  MATH  Google Scholar 

  12. Busemann H, Petty C. Problems on convex bodies. Math Scand, 1956, 4: 88–94

    Article  MathSciNet  MATH  Google Scholar 

  13. Caglar U, Fradelizi M, Guédon O, et al. Functional versions of Lp-affine surface area and entropy inequalities. Int Math Res Not IMRN, 2016, 2016: 1223–1250

    Article  MATH  Google Scholar 

  14. Caglar U, Werner E M. Mixed f-divergence and inequalities for log-concave functions. Proc Lond Math Soc (3), 2015, 110: 271–290

    Article  MathSciNet  MATH  Google Scholar 

  15. Colesanti A. Brunn-Minkowski inequalities for variational functionals and related problems. Adv Math, 2005, 194: 105–140

    Article  MathSciNet  MATH  Google Scholar 

  16. Colesanti A. Functional inequalities related to the Rogers-Shephard inequality. Mathematika, 2006, 53: 81–101

    Article  MathSciNet  MATH  Google Scholar 

  17. Colesanti A, Fragalà I. The first variation of the total mass of log-concave functions and related inequalities. Adv Math, 2013, 244: 708–749

    Article  MathSciNet  MATH  Google Scholar 

  18. Cordero-Erausquin D, Klartag B. Moment measures. J Funct Anal, 2015, 268: 3834–3866

    Article  MathSciNet  MATH  Google Scholar 

  19. Fang N, Xu W, Zhou J, et al. The sharp convex mixed Lorentz-Sobolev inequality. Adv Appl Math, 2019, 111: 101936

    Article  MathSciNet  MATH  Google Scholar 

  20. Fang N, Zhou J. LYZ ellipsoid and Petty projection body for log-concave functions. Adv Math, 2018, 340: 914–959

    Article  MathSciNet  MATH  Google Scholar 

  21. Fang N, Zhou J. On the mixed Pólya-Szegö principle. Acta Math Sin Engl Ser, 2021, 37: 753–767

    Article  MathSciNet  MATH  Google Scholar 

  22. Fradelizi M, Meyer M. Some functional forms of Blaschke-Santaloó inequality. Math Z, 2007, 256: 379–395

    Article  MathSciNet  MATH  Google Scholar 

  23. Fradelizi M, Meyer M. Some functional inverse Santaló inequalities. Adv Math, 2008, 218: 1430–1452

    Article  MathSciNet  MATH  Google Scholar 

  24. Gardner R J. Intersection bodies and the Busemann-Petty problem. Trans Amer Math Soc, 1994, 342: 435–445

    Article  MathSciNet  MATH  Google Scholar 

  25. Gardner R J. A positive answer to the Busemann-Petty problem in three dimensions. Ann of Math (2), 1994, 140: 435–447

    Article  MathSciNet  MATH  Google Scholar 

  26. Gardner R J, Koldobsky A, Schlumprecht T. An analytic solution to the Busemann-Petty problem on sections of convex bodies. Ann of Math (2), 1999, 149: 691–703

    Article  MathSciNet  MATH  Google Scholar 

  27. Giannopoulos A A. A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bodies. Mathematika, 1990, 37: 239–244

    Article  MathSciNet  MATH  Google Scholar 

  28. Goodey P, Lutwak E, Wei W. Functional analytic characterization of classes of convex bodies. Math Z, 1996, 222: 363–381

    Article  MathSciNet  MATH  Google Scholar 

  29. Helgason S. The Radon Transform, 2nd ed. Boston: Birkhäauser, 1999

    Book  MATH  Google Scholar 

  30. Huang Y, Lutwak E, Yang D, et al. Geometric measures in the dual Brunn-Minkowski theory and their Minkowski problems. Acta Math, 2016, 216: 325–388

    Article  MathSciNet  MATH  Google Scholar 

  31. Koldobsky A. Intersection bodies, positive definite distributions, and the Busemann-Petty problem. Amer J Math, 1998, 120: 827–840

    Article  MathSciNet  MATH  Google Scholar 

  32. Koldobsky A. Intersection bodies in ℝ4. Adv Math, 1998, 136: 1–14

    Article  MathSciNet  MATH  Google Scholar 

  33. Koldobsky A. A functional analytic approach to intersection bodies. Geom Funct Anal, 2000, 10: 1507–1526

    Article  MathSciNet  MATH  Google Scholar 

  34. Koldobsky A. Isomorphic Busemann-Petty problem for sections of proportional dimensions. Adv Appl Math, 2015, 71: 138–145

    Article  MathSciNet  MATH  Google Scholar 

  35. Koldobsky A, Köonig H, Zymonopoulou M. The complex Busemann-Petty problem on sections of convex bodies. Adv Math, 2008, 218: 352–367

    Article  MathSciNet  MATH  Google Scholar 

  36. Koldobsky A, Paouris G, Zymonopoulou M. Isomorphic properties of intersection bodies. J Funct Anal, 2011, 261: 2697–2716

    Article  MathSciNet  MATH  Google Scholar 

  37. Koldobsky A, Zvavitch A. An isomorphic version of the Busemann-Petty problem for arbitrary measures. Geom Dedicata, 2015, 174: 261–277

    Article  MathSciNet  MATH  Google Scholar 

  38. Larman D G, Rogers C A. The existence of a centrally symmetric convex body with central sections that are unexpectedly small. Mathematika, 1975, 22: 164–175

    Article  MathSciNet  MATH  Google Scholar 

  39. Lutwak E. Dual mixed volumes. Pacific J Math, 1975, 58: 531–538

    Article  MathSciNet  MATH  Google Scholar 

  40. Lutwak E. Intersection bodies and dual mixed volumes. Adv Math, 1988, 71: 232–261

    Article  MathSciNet  MATH  Google Scholar 

  41. Lutwak E. On some ellipsoid formulas of Busemann, Furstenberg and Tzkoni, Guggenheimer, and Petty. J Math Anal Appl, 1991, 159: 18–26

    Article  MathSciNet  MATH  Google Scholar 

  42. Milman E. Generalized intersection bodies. J Funct Anal, 2006, 240: 530–567

    Article  MathSciNet  MATH  Google Scholar 

  43. Milman V, Rotem L. Mixed integral and related inequalities. J Funct Anal, 2013, 264: 570–604

    Article  MathSciNet  MATH  Google Scholar 

  44. Papadimitrakis M. On the Busemann-Petty problem about convex, centrally symmetric bodies in ℝn. Mathematika, 1992, 39: 258–266

    Article  MathSciNet  MATH  Google Scholar 

  45. Rotem L. Support functions and mean width for α-concave functions. Adv Math, 2013, 243: 168–186

    Article  MathSciNet  MATH  Google Scholar 

  46. Rubin B, Zhang G. Generalizations of the Busemann-Petty problem for sections of convex bodies. J Funct Anal, 2004, 213: 473–501

    Article  MathSciNet  MATH  Google Scholar 

  47. Wu D. The isomorphic Busemann-Petty problem for s-concave measures. Geom Dedicata, 2020, 204: 131–148

    Article  MathSciNet  MATH  Google Scholar 

  48. Yaskin V. The Busemann-Petty problem in hyperbolic and spherical spaces. Adv Math, 2006, 203: 537–553

    Article  MathSciNet  MATH  Google Scholar 

  49. Yaskin V. A solution to the lower dimensional Busemann-Petty problem in the hyperbolic space. J Geom Anal, 2006, 16: 735–745

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang G. Sections of convex bodies. Amer J Math, 1996, 118: 319–340

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang G. A positive solution to the Busemann-Petty problem in ℝ4. Ann of Math (2), 1999, 149: 535–543

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang G. Intersection bodies and polytopes. Mathematika, 1999, 46: 29–34

    Article  MathSciNet  MATH  Google Scholar 

  53. Zvavitch A. The Busemann-Petty problem for arbitrary measures. Math Ann, 2005, 331: 867–887

    Article  MathSciNet  MATH  Google Scholar 

  54. Zymonopoulou M. The complex Busemann-Petty problem for arbitrary measures. Arch Math Basel, 2008, 91: 436–449

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant No. 12001291) and the Fundamental Research Funds for the Central Universities (Grant No. 531118010593). The second author was supported by National Natural Science Foundation of China (Grant No. 12071318). The authors thank anonymous referees for helpful suggestions and comments that directly led to the improvement of the early manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiazu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, N., Zhou, J. The Busemann-Petty problem on entropy of log-concave functions. Sci. China Math. 65, 2171–2182 (2022). https://doi.org/10.1007/s11425-021-1907-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1907-6

Keywords

MSC(2020)

Navigation