Skip to main content

Advertisement

Log in

An isomorphic version of the Busemann–Petty problem for arbitrary measures

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

The Busemann–Petty problem for an arbitrary measure \(\mu \) with non-negative even continuous density in \({\mathbb R}^n\) asks whether origin-symmetric convex bodies in \({\mathbb R}^n\) with smaller \((n-1)\)-dimensional measure \(\mu \) of all central hyperplane sections necessarily have smaller measure \(\mu .\) It was shown in Zvavitch (Math Ann 331:867–887, 2005) that the answer to this problem is affirmative for \(n\le 4\) and negative for \(n\ge 5\). In this paper we prove an isomorphic version of this result. Namely, if \(K,M\) are origin-symmetric convex bodies in \({\mathbb R}^n\) such that \(\mu (K\cap \xi ^\bot )\le \mu (M\cap \xi ^\bot )\) for every \(\xi \in {\mathbb S}^{n-1},\) then \(\mu (K)\le \sqrt{n}\ \mu (M).\) Here \(\xi ^\bot \) is the central hyperplane perpendicular to \(\xi .\) We also study the above question with additional assumptions on the body \(K\) and present the complex version of the problem. In the special case where the measure \(\mu \) is convex we show that \(\sqrt{n}\) can be replaced by \(cL_n,\) where \(L_n\) is the maximal isotropic constant. Note that, by a recent result of Klartag, \(L_n \le O(n^{1/4})\). Finally we prove a slicing inequality

$$\begin{aligned} \mu (K)\le C n^{1/4} \max _{\xi \in {\mathbb S}^{n-1}} \mu (K \cap \xi ^\perp )\ \mathrm{vol}_{n}(K)^{\frac{1}{n}} \end{aligned}$$

for any convex even measure \(\mu \) and any symmetric convex body \(K\) in \({\mathbb R}^n,\) where \(C\) is an absolute constant. This inequality was recently proved in Koldobsky (Adv Math 254:33–40, 2014) for arbitrary measures with continuous density, but with \(\sqrt{n}\) in place of \(n^{1/4}.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, K.: Logarithmically concave functions and sections of convex sets in \(\mathbb{R}^n\). Stud. Math. 88, 69–84 (1988)

    MATH  Google Scholar 

  2. Ball, K.: Normed spaces with a weak Gordon–Lewis property. Lecture Notes in Math. Springer, Berlin 1470, 36–47 (1991)

  3. Bobkov, S.G.: Convex bodies and norms associated to convex measures. Probab. Theory Relat. Fields 147(1–2), 303–332 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bobkov, S., Nazarov, F.: On convex bodeis and log-concave probability measures with unconditional basis. In: Milman-Schechtman (Ed.) Geometric Aspects of Functional Analysis, Lecture Notes in Math. 2003, 53–69 (1807)

  5. Borell, C.: Convex measures on locally convex spaces. Ark. Mat. 12, 239–252 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borell, C.: Convex set functions in \(d\)-space. Period. Math. Hungar. 6, 111–136 (1975)

    Article  MathSciNet  Google Scholar 

  7. Bourgain, J.: On high-dimensional maximal functions associated to convex bodies. Am. J. Math. 108, 1467–1476 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bourgain, J.: Geometry of Banach spaces and harmonic analysis. In: Proceedings of the International Congress of Mathematicians (Berkeley, CA, 1986), Am. Math. Soc., Providence, RI, 871–878 (1987)

  9. Bourgain, J.: On the distribution of polynomials on high-dimensional convex sets, Geometric aspects of functional analysis, Israel seminar (1989–90), Lecture Notes in Math. 1469, Springer, Berlin, 127–137 (1991)

  10. Brazitikos, S., Giannopoulos, A., Valettas, P., Vritsiou, B.: Geometry of Isotropic Log-Concave Measures. Amer. Math. Soc, Providence (2014)

    Google Scholar 

  11. Busemann, H., Petty, C.M.: Problems on convex bodies. Math. Scand. 4, 88–94 (1956)

    MATH  MathSciNet  Google Scholar 

  12. Cordero-Erausquin, D., Fradelizi, M., Paouris, G., Pivovarov, P.: Volume of the Polar of Random Sets and Shadow Systems, arXiv:1311.3690

  13. Gardner, R.J.: Geometric Tomography, 2nd edn. Encyclopedia of Mathematics and its Applications, 58. Cambridge University Press, Cambridge (2006)

  14. Gardner, R.J., Koldobsky, A., Schlumprecht, Th: An analytic solution to the Busemann–Petty problem on sections of convex bodies. Ann. Math. 149, 691–703 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press, New York (1996)

    Book  MATH  Google Scholar 

  16. Junge, M.: On the hyperplane conjecture for quotient spaces of \(L_p\). Forum Math. 6, 617–635 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Junge, M.: Proportional Subspaces of Spaces with Unconditional Basis Have Good Volume Properties, Geometric aspects of functional analysis (Israel Seminar, 1992–1994), 121–129, Oper. Theory Adv. Appl., 77, Birkhauser, Basel, (1995)

  18. Kalton, N., Koldobsky, A.: Intersection bodies and \(L_p\)-spaces. Adv. Math. 196, 257–275 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Klartag, B.: On convex perturbations with a bounded isotropic constant. Geom. and Funct. Anal. (GAFA) 16(6), 1274–1290 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kim, J., Yaskin, V., Zvavitch, A.: The geometry of p-convex intersection bodies. Adv. Math. 226(6), 5320–5337 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Koldobsky, A.: A Hyperplane Inequality for Measures of Unconditional Convex bodies, arXiv:1312.7048

  22. Koldobsky, A.: A \(\sqrt{n}\) estimate for measures of hyperplane sections of convex bodies. Adv. Math. 254, 33–40 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Koldobsky, A.: Fourier Analysis in Convex Geometry, Math. Surveys and Monographs, AMS, Providence (2005)

  24. Koldobsky, A.: Slicing Inequalities for Subspaces of \(L_p\), arXiv:1310.8102

  25. Koldobsky, A.: Estimates for Measures of Sections of Convex Bodies, arXiv:1309.6485

  26. Koldobsky, A.: A generalization of the Busemann–Petty problem on sections of convex bodies. Israel J. Math. 110, 75–91 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Koldobsky, A.: A functional analytic approach to intersection bodies. Geom. Funct. Anal. 10, 1507–1526 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Koldobsky, A.: Intersection bodies, positive definite distributions and the Busemann–Petty problem. Am. J. Math. 120, 827–840 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Koldobsky, A.: A hyperplane inequality for measures of convex bodies in \(\mathbb{R}^n, n\le 4\). Dicrete Comput. Geom. 47, 538–547 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Koldobsky, A., Paouris, G., Zymonopoulou, M.: Complex intersection bodies. J. Lond. Math. Soc. 88(2), 538–562 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Koldobsky, A., Yaskin, V.: The interface between harmonic analysis and convex geometry. Amer. Math. Soc, Providence (2008)

    MATH  Google Scholar 

  32. König, H., Meyer, M., Pajor, A.: The isotropy constants of the Schatten classes are bounded. Math. Ann. 312, 773–783 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lewis, D.R.: Finite dimensional subspaces of \(L_p\). Stud. Math. 63, 207–212 (1978)

    MATH  Google Scholar 

  34. Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232–261 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  35. Milman, E.: Generalized intersection bodies. J. Func. Anal. 240, 530–567 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Milman, E.: Dual mixed volumes and the slicing problem. Adv. Math. 207, 566–598 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Milman, V.D., Pajor, A.: Isotropic Position and Inertia Ellipsoids and Zonoids of the Unit Ball of a Normed \(n\) -Dimensional Space, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., 1376, Springer, Berlin, 64–104 (1989)

  38. Milman, V.D., Schechtman, G.: Asymptotic Theory of Finite-Dimensional normed Spaces, Springer Lecture Notes 1200 (1986)

  39. Schechtman, G., Zvavitch, A.: Embedding subspaces of \(L_p\) into \(\ell _N^p, 0<p<1,\). Math. Nachr. 227, 133–142 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zhang, G.: A positive answer to the Busemann–Petty problem in four dimensions. Ann. Math. 149, 535–543 (1999)

    Article  MATH  Google Scholar 

  41. Zvavitch, A.: The Busemann–Petty problem for arbitrary measures. Math. Ann. 331, 867–887 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Koldobsky.

Additional information

The first named author is supported in part by U.S. National Science Foundation Grant DMS-1265155. The second named author is supported in part by U.S. National Science Foundation Grant DMS-1101636.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koldobsky, A., Zvavitch, A. An isomorphic version of the Busemann–Petty problem for arbitrary measures. Geom Dedicata 174, 261–277 (2015). https://doi.org/10.1007/s10711-014-0016-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-014-0016-x

Keywords

Mathematics Subject Classification (1991)

Navigation