Skip to main content

Advertisement

Log in

Some functional forms of Blaschke–Santaló inequality

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We establish new functional versions of the Blaschke–Santaló inequality on the volume product of a convex body which generalize to the non-symmetric setting an inequality of Ball [Isometric problems in ℓ p and sections of convex sets. PhD Dissertation, Cambridge, 1986] and we give a simple proof of the case of equality. As a corollary, we get some inequalities for log-concave functions and Legendre transforms which extend the recent result of Artstein et al. [Mathematika 51:33–48, 2004], with its equality case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artstein S., Klartag M. and Milman V. (2004). The Santaló point of a function and a functional form of Santaló inequality. Mathematika 51: 33–48

    Article  MATH  MathSciNet  Google Scholar 

  2. Ball, K.: Isometric problems in ℓ p and sections of convex sets. PhD Dissertation, Cambridge (1986)

  3. Ball K. (1988). Logarithmically concave functions and sections of convex sets in \(\mathbb{R}^{n}\). Stud. Math. 88(1): 69–84

    MATH  Google Scholar 

  4. Blaschke W. (1985). Über affine Geometrie 7: Neue Extremeigenschaften von Ellipse und Ellipsoid. Wilhelm Blaschke Gesammelte Werke 3. Thales Verlag, Essen, 246–258

    Google Scholar 

  5. Borell C. (1975). Convex set functions in d-space. Period. Math. Hungar. 6(2): 111–136

    Article  MathSciNet  Google Scholar 

  6. Colesanti, A.: Functional inequalities related to the Rogers–Shephard inequality. Mathematika (in press)

  7. Cordero-Erausquin D. (2002). Santaló’s inequality on \(\mathbb{C}^{n}\) by complex interpolation. C. R. Math. Acad. Sci. Paris 334(9): 767–772

    MATH  MathSciNet  Google Scholar 

  8. Cordero-Erausquin D., Fradelizi M. and Maurey B. (2004). The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. J. Funct. Anal. 214(2): 410–427

    Article  MATH  MathSciNet  Google Scholar 

  9. Dubuc S. (1977). Critères de convexité et inégalités intégrales. Ann. Inst. Fourier (Grenoble) 27(1): 135–165

    MATH  MathSciNet  Google Scholar 

  10. Falconer K.J. (1983). Applications of a result on spherical integration to the theory of convex sets. Am. Math. Mon. 90(10): 690–693

    Article  MATH  MathSciNet  Google Scholar 

  11. Hug D. (1996). Contributions to affine surface area. Manuscr. Math. 91(3): 283–301

    MATH  MathSciNet  Google Scholar 

  12. Klartag, B.: Marginals of geometric inequalities. Geometric Aspects Funct. Anal. Springer Lect. Notes Math (in press)

  13. Klartag M. and Milman V. (2005). Geometry of log-concave functions and measures. Geom. Dedicata 112: 169–182

    Article  MATH  MathSciNet  Google Scholar 

  14. Lutwak E. and Zhang G. (1997). Blaschke–Santaló inequalities. J. Differ. Geom. 47(1): 1–16

    MATH  MathSciNet  Google Scholar 

  15. Lutwak E., Yang D. and Zhang G. (2004). Moment-entropy inequalities. Ann. Probab. 32(1B): 757–774

    Article  MATH  MathSciNet  Google Scholar 

  16. Meyer M. and Pajor A. (1990). On the Blaschke–Santaló inequality. Arch. Math. 55(1): 82–93

    Article  MATH  MathSciNet  Google Scholar 

  17. Petty C.M. (1985). Affine isoperimetric problems. Discrete geometry and convexity. Ann. N. Y. Acad. Sci. 440: 113–127

    Article  MathSciNet  Google Scholar 

  18. Saint-Raymond, J.: Sur le volume des corps convexes symétriques. In: Séminaire d’Initiation à l’Analyse, 1980/1981, Publ. Math. Univ. Pierre et Marie Curie, Paris (1981)

  19. Santaló L.A. (1949). An affine invariant for convex bodies of n-dimensional space. Port. Math. 8: 155–161

    MATH  Google Scholar 

  20. Uhrin B. (1994). Curvilinear extensions of the Brunn-Minkowski-Lusternik inequality. Adv. Math. 109(2): 288–312

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fradelizi, M., Meyer, M. Some functional forms of Blaschke–Santaló inequality. Math. Z. 256, 379–395 (2007). https://doi.org/10.1007/s00209-006-0078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-006-0078-z

Keywords

Navigation