Skip to main content
Log in

Smoothness of invariant manifolds and foliations for infinite dimensional random dynamical systems

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the smoothness of invariant manifolds and foliations for random dynamical systems with nonuniform pseudo-hyperbolicity in Hilbert spaces. We discuss on the effect of temperedness and the spectral gaps in the nonuniform pseudo-hyperbolicity so as to prove the existence of invariant manifolds and invariant foliations, which preserve the CN,τ(ω) HÖlder smoothness of the random system in the space variable and the measurability of the random system in the sample point. Moreover, we also prove that the stable foliation is CN−1,τ(ω) in the base point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal R P. Difference Equations and Inequalities: Theory, Methods, and Applications, 2nd ed. New York: Marcel Dekker, 2000

    MATH  Google Scholar 

  2. Arnold L. Random Dynamical Systems. New York: Springer, 1998

    MATH  Google Scholar 

  3. Bates P, Jones C. Invariant manifolds for semilinear partial differential equations. Dynamics Rep, 1989, 2: 1–38

    MathSciNet  MATH  Google Scholar 

  4. Bates P, Lu K, Zeng C. Existence and persistence of invariant manifolds for semiflows in Banach space. Mem Amer Math Soc, 1998, 135: 1–132

    MathSciNet  MATH  Google Scholar 

  5. Bates P, Lu K, Zeng C. Invariant foliations near normally hyperbolic invariant manifolds for semiflows. Trans Amer Math Soc, 2000, 352: 4641–4676

    MathSciNet  MATH  Google Scholar 

  6. Bates P, Lu K, Zeng C. Approximately invariant manifolds and global dynamics of spike states. Invent Math, 2008, 174: 355–433

    MathSciNet  MATH  Google Scholar 

  7. Bensoussan A, Flandoli F. Stochastic inertial manifold. Stochastics Stochastics Rep, 1995, 53: 13–39

    MathSciNet  MATH  Google Scholar 

  8. Caraballo T, Duan J, Lu K, et al. Invariant manifolds for random and stochastic partial differential equations. Adv Nonlinear Stud, 2009, 10: 23–51

    MathSciNet  MATH  Google Scholar 

  9. Carr J. Application of Centre Manifold Theory. New York: Springer, 1981

    MATH  Google Scholar 

  10. Castaing C, Valadier M. Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Berlin: Springer, 1977

    MATH  Google Scholar 

  11. Chow S N, Li C, Wang D. Normal Forms and Bifurcation of Planar Vector Fields. London: Cambridge University Press, 1994

    MATH  Google Scholar 

  12. Chow S N, Lin X, Lu K. Smooth invariant foliations in infinite dimensional spaces. J Differential Equations, 1991, 94: 266–291

    MathSciNet  MATH  Google Scholar 

  13. Chow S N, Lu K. Invariant manifolds for flows in Banach spaces. J Differential Equations, 1988, 74: 285–317

    MathSciNet  MATH  Google Scholar 

  14. Chow S N, Lu K. Ck center unstable manifolds. Proc Roy Soc Edinburgh Sect A, 1988, 108: 303–320

    MathSciNet  Google Scholar 

  15. Chow S N, Lu K, Sell G R. Smoothness of inertial manifolds. J Math Anal Appl, 1992, 169: 283–312

    MathSciNet  MATH  Google Scholar 

  16. Da Prato G, Debussche A. Construction of stochastic inertial manifolds using backward integration. Stochastics Stochastics Rep, 1996, 59: 305–324

    MathSciNet  MATH  Google Scholar 

  17. Duan J, Lu K, Schmalfuss B. Invariant manifolds for stochastic partial differential equations. Ann Probab, 2003, 31: 2109–2135

    MathSciNet  MATH  Google Scholar 

  18. Duan J, Lu K, Schmalfuss B. Smooth stable and unstable manifolds for stochastic evolutionary equations. J Dynam Differential Equations, 2004, 16: 949–972

    MathSciNet  MATH  Google Scholar 

  19. Fenichel N. Geometrical singular perturbation theory for ordinary differential equations. J Differential Equations, 1979, 31: 53–98

    MathSciNet  MATH  Google Scholar 

  20. Foias C, Sell G R, Temam R. Inertial manifolds for nonlinear evolutionary equations. J Differential Equations, 1998, 73: 309–353

    MathSciNet  MATH  Google Scholar 

  21. Girya T V, Chueshov I D. Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems. Sb Math, 1995, 186: 29–45

    MathSciNet  MATH  Google Scholar 

  22. Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. New York: Springer, 1983

    MATH  Google Scholar 

  23. Guo P, Shen J. Smooth invariant manifolds for random dynamical systems. Rocky Mountain J Math, 2016, 46: 1925–1962

    MathSciNet  MATH  Google Scholar 

  24. Hadamard J. Sur l’iteration et les solutions asymptotiques des equations differentielles. Bull Soc Math France, 1901, 29: 224–228

    MATH  Google Scholar 

  25. Hale J K. Ordinary Differential Equations. New York: John Wiley & Sons, 1969

    MATH  Google Scholar 

  26. Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. New York: Springer, 1981

    MATH  Google Scholar 

  27. Jones C K R T. Geometric singular perturbation theory. In: Dynamical Systems. Lecture Notes in Mathematics, vol. 1609. Berlin: Springer, 1995, 44–118

    Google Scholar 

  28. Kelley A. The stable, center-stable, center, center-unstable, unstable manifolds. J Differential Equations, 1967, 3: 546–570

    MathSciNet  MATH  Google Scholar 

  29. Li J, Lu K, Bates P. Normally hyperbolic invariant manifolds for random dynamical systems: Part I-persistence. Trans Amer Math Soc, 2013, 365: 5933–5966

    MathSciNet  MATH  Google Scholar 

  30. Li W, Lu K. Sternberg theorems for random dynamical systems. Comm Pure Appl Math, 2005, 58: 941–988

    MathSciNet  MATH  Google Scholar 

  31. Lian Z, Lu K. Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space. Mem Amer Math Soc, 2010, 206: 967

    MathSciNet  MATH  Google Scholar 

  32. Liu P, Qian M. Smooth Ergodic Theory of Random Dynamical Systems. Lecture Notes in Mathematics, vol. 1606. Berlin: Springer, 1995

    MATH  Google Scholar 

  33. Lu K. A Hartman-Grobman theorem for scalar reaction-diffusion equations. J Differential Equations, 1991, 93: 364–394

    MathSciNet  MATH  Google Scholar 

  34. Lu K, Schmalfuss B. Invariant foliations for stochastic partial differential equations. Stoch Dyn, 2008, 8: 505–518

    MathSciNet  MATH  Google Scholar 

  35. Lyapunov A M. Problème général de la stabilité du mouvement. Annals of Mathematics Studies, vol. 17. Princeton: Princeton University Press, 1947

    Google Scholar 

  36. Mallet-Paret J, Sell G R. Inertial manifolds for reaction-diffusion equations in higher space dimensions. J Amer Math Soc, 1988, 1: 805–866

    MathSciNet  MATH  Google Scholar 

  37. Mohammed S E A, Scheutzow M K R. The stable manifold theorem for stochastic differential equations. Ann Probab, 1999, 27: 615–652

    MathSciNet  MATH  Google Scholar 

  38. Pesin Ya B. Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math Surveys, 1977, 32: 55–112

    MATH  Google Scholar 

  39. Perron O. Über stabilität und asymptotisches verhalten der integrale von differentialgleichungssystemen. Math Z, 1929, 29: 129–160

    MathSciNet  MATH  Google Scholar 

  40. Pugh C, Shub M. Ergodic attractors. Trans Amer Math Soc, 1989, 312: 1–54

    MathSciNet  MATH  Google Scholar 

  41. Ruelle D. Characteristic exponents and invariant manifolds in Hilbert space. Ann of Math (2), 1982, 115: 243–290

    MathSciNet  MATH  Google Scholar 

  42. Schmalfuss B. A random fixed point theorem and the random graph transformation. J Math Anal Appl, 1998, 225: 91–113

    MathSciNet  MATH  Google Scholar 

  43. Wanner T. Linearization of random dynamical systems. Dynamics Rep, 1995, 4: 203–268

    MathSciNet  MATH  Google Scholar 

  44. Zhang W, Lu K, Zhang W. Differentiability of the conjugacy in the Hartman-Grobman theorem. Trans Amer Math Soc, 2017, 369: 4995–5030

    MathSciNet  MATH  Google Scholar 

  45. Zhou L, Lu K, Zhang W. Roughness of tempered exponential dichotomies for infinite-dimensional random difference equations. J Differential Equations, 2013, 254: 4024–4046

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11501549, 11331007, 11971330, 11771307, 11831012 and 11726623) and the Fundamental Research Funds for the Central Universities (Grant No. YJ201646). The authors are very grateful to the anonymous referees for their careful reading and helpful suggestions, which have notably improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kening Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Lu, K. & Zhang, W. Smoothness of invariant manifolds and foliations for infinite dimensional random dynamical systems. Sci. China Math. 63, 1877–1912 (2020). https://doi.org/10.1007/s11425-019-1664-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-019-1664-3

Keywords

MSC(2010)

Navigation