Skip to main content
Log in

Strong Averaging Along Foliated Lévy Diffusions with Heavy Tails on Compact Leaves

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

This article shows a strong averaging principle for diffusions driven by discontinuous heavy-tailed Lévy noise, which are invariant on the compact horizontal leaves of a foliated manifold subject to small transversal random perturbations. We extend a result for such diffusions with exponential moments and bounded, deterministic perturbations to diffusions with polynomial moments of order \(p\geqslant 2\), perturbed by deterministic and stochastic integrals with unbounded coefficients and polynomial moments. The main argument relies on a result of the dynamical system for each individual jump increments of the corresponding canonical Marcus equation. The example of Lévy rotations on the unit circle subject to perturbations by a planar Lévy-Ornstein-Uhlenbeck process is carried out in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anosov, D. B.: Averaging in systems of ordinary differential equations with fast oscillating solutions (Russian). Izv. Acad. nauk SSSR Ser. Mat. 24, 731–742 (1960)

    Google Scholar 

  2. Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  3. Arnold, L.: Hasselmann’s program revisited: the analysis of stochasticity in deterministic climate models. In: Imkeller, P. et al. (eds.) Stochastic Climate Models, vol. 49, pp 141–157. Basel Birkhäuser Prog. Probab. 49, 141–157 (2001)

  4. Arnold, V.: Mathematical Methods of Classical Mechanics. Springer, Berlin (1989)

    Book  Google Scholar 

  5. Arak, T. V., Zaitsev, A.: On the rate of convergence in Kolmogorov’s second uniform limit theorem. Theory Probab. Appl. 28(2), 351–374 (1983)

    MathSciNet  MATH  Google Scholar 

  6. Bainov, D. D., Stoyanov, I. M.: The averaging method for a class of stochastic differential equations. Ukr. Math. J. 26(2), 186–194 (1974)

    MathSciNet  Google Scholar 

  7. Bakry, D., Cattiaux, P., Guillin, A.: Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254(3), 727–759 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bell, D. R.: The Malliavin Calculus. Longman Scientific & Techincal (1987)

  9. Bismut, J. M.: Martingales, the Malliavin calculus and hypoellipticity under general Hörmander’s conditions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 56(4), 469–505 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boothby, W. M.: An Introduction to Differential Manifold and Riemannian Geometry. Academic Press, INC (1986)

  11. Borodin, A., Freidlin, M.: Fast oscillating random perturbations of dynamical systems with conservation laws. Ann. Inst. H. Poincaré,. Prob. Statist. 31, 485–525 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Bogoliubov, N. N., Krylov, N. M.: La theorie générale de la mésure dans son application a létude de systèmes dynamiques de la mécanique non-linéaire (French). Ann. Math. II 38, Zbl. 16.86 (1937)

  13. Bogoliubov, N. N., Mitropolskii, Y: Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Breach, New York (1961)

    Google Scholar 

  14. Bramanti, M.: An Invitation to Hypoelliptic Operators and Hörmander’s Vector Fields. Springer Briefs in Mathematics (2014)

  15. Brin, M., Freidlin, M. I.: On stochastic behavior of perturbed Hamiltonian systems. Ergod. Th. Dynam. Sys. 20, 55–76 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cannas, A.: Lectures on symplectic geometry. Lecture Notes in Mathematics 1764 (2001)

  17. Cerrai, S.: A Khasminskii type averaging principle for stochastic reaction-diffusion equations. Ann. Probab. 19(3), 899–948 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Douca, R., Fortb, G., Guillinc, A.: Subgeometric rates of convergence of f-ergodic strong Markov processes. Stoch. Process. Appl. 119, 897–923 (2009)

    Article  MathSciNet  Google Scholar 

  19. Xu, Y., Duan, J., Xu, W.: An averaging principle for stochastic dynamical systems with Levý noise. Physica D 240, 1395–1401 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Down, D., Meyn, S. P., Tweedie, R. L.: Exponential and uniform ergodicity of Markov process. Ann. Probab. 23(4), 1671–1691 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Freidlin, M. I., Wentzell, A. D.: Random Perturbations of Dynamical Systems. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  22. Freidlin, M. I., Wentzell, A. D.: Random Perturbations of Dynamical Systems. Springer, Berlin (1991)

    MATH  Google Scholar 

  23. Freidlin, M. I.: The averaging principle and theorems on large deviations. Russ. Math. Surv. 33(5), 107–160 (1978)

    Article  MathSciNet  Google Scholar 

  24. Garnett, L.: Foliation, the ergodic theorem and Brownian motion. J. Funct. Anal. 51, 285–311 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gargate, I. I. G., Ruffino, P. R.: An averaging principle for diffusions in foliated spaces. Ann. Probab. 44(1), 567–588 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gihman, I. I., Skorohod, A. V.: Stochastic Differential Equations. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  27. Hairer, M.: On Malliavins proof of Hörmander’s theorem. Bull. Sci. math. 135, 650–666 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Högele, M. A., Ruffino, P. R.: Averaging along foliated Lévy diffusions. Nonlinear Anal. Theory Methods Appl. 112, 1–14 (2015)

    Article  MATH  Google Scholar 

  29. Kabanov, Y., Pergamenshchikov, S.: Two-Scale Stochastic Systems: Asymptotic Analysis and Control. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  30. Kakutani, S., Petersen, K.: The speed of convergence in the ergodic theorem. Monat. Mathematik 91, 11–18 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Khasminskii, R. Z.: A limit theorem for the solution of differential equations with random right-hand sides. Theory Probab. Appl. 11, 390–405 (1963)

    Article  Google Scholar 

  32. Khasminskii, R. Z.: Principle of averaging of parabolic and elliptic differential equations for Markov process with small diffusion. Theory Probab. Appl. 8, 1–21 (1963)

    Article  Google Scholar 

  33. Khasminskii, R. Z.: On stochastic processes defined by differential equations with a small parameter. Theor. Probab. Appl. 11, 211–228 (1966)

    Article  MathSciNet  Google Scholar 

  34. Khasminskii, R. Z.: On the averaging principle for Itô stochastic differential equations (Russian). Kibernetika 4, 260–279 (1968)

    Google Scholar 

  35. Khasminski, R. Z., Krylov, N. M.: On the averaging principle for diffusion processes with null-recurrent fast component. Stoch. Proc. Appl. 93(2), 229–240 (2001)

    Article  MathSciNet  Google Scholar 

  36. Kolomiets, V. G., Melnikov, A. I.: Averaging of stochastic systems of integral-differential equations with Poisson noise. Ukr. Math. J. 43(2), 242–246 (1991)

    Article  MATH  Google Scholar 

  37. Krasnoselskii, M. A., Krein, S. G.: On the averaging principle in nonlinear mechanics (Russian). Uspekhi Mat. Nauk. 10(3), 147–152 (1955)

    MathSciNet  Google Scholar 

  38. Krengel, U.: On the speed of convergence of the ergodic theorem. Monat. Mathematik 86, 3–6 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kolmogorov, A. N.: Two uniform limit theorems for sums of independent random variables. Theory Prob. Appl. 1, 384–394 (1956)

    Article  Google Scholar 

  40. Kulik, A.: Exponential ergodicity of the solutions to SDEs with a jump noise. Stoch. Process. Appl. 119, 602–632 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kurtz, T. G., Pardoux, E., Protter, P: Stratonovich stochastic differential equations driven by general semimartingales. Annales de l’H.I.P. B 31(2), 351–377 (1995)

    MathSciNet  MATH  Google Scholar 

  42. Kunita, H.: Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms. In: Rao, M. M. (ed.) Real and Stochastic Analysis. Birkhauser, 305–373 (2004)

  43. Li, X. -M.: An averaging principle for a completely integrable stochastic Hamiltonian systems. Nonlinearity 21, 803–822 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Marcus, S. I.: Modeling and analysis of stochastic differential equations driven by Poisson point processes. IEEE Trans. Inf. Theory 24(3), 164–172 (1978)

    Article  MATH  Google Scholar 

  45. Marcus, S. I.: Modeling and analysis of stochastic differential equations driven by semimartingales. Stochastics 4(3), 223–245 (1981)

    Article  MATH  Google Scholar 

  46. Pardoux, E., Veretennikov, A. Y: On the Poisson equation and diffusion approximation. Ann. Probab. 29(3), 1061–1085 (2000)

    MathSciNet  MATH  Google Scholar 

  47. Pascal, M.: Rates of convergence in the central limit theorem for empirical processes. Annales de l’I.H.P. Probabilités et statistiques 22(4), 381–423 (1986)

    MathSciNet  MATH  Google Scholar 

  48. Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach. Cambridge University Press (2007)

  49. Protter, Ph.: Stochastic Integration and Differential Equations. Springer, Berlin (2004)

    MATH  Google Scholar 

  50. Wang, W., Roberts, A. R.: Average and deviation for slow–fast stochastic partial differential equations. J. Differ. Equ. 253(1), 1265–1286 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sato, K. I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999)

  52. Saint Loubert Bié, E.: ÉTude d’une EDPS conduite par un bruit poissonnien. Probab. Theory Relat. Fields 111, 287–321 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sanders, J. A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems. Springer (2007)

  54. Skorokhod, A. V.: Asymptotic Methods of the Theory of Stochastic Differential Equations (Russian). Naukova Dumka, Kiev (1987). English transl., Amer. Math. Soc., Providence, R.I (1989)

  55. Stratonovich, R. L.: Topics in the theory of random noise. Gordon and Breach, New York Vol. 1 (1963), Vol. 2 (1967)

  56. Stratonovich, R. L.: Conditional Markov Processes and their Application to the Theory of Optimal Control. American Elsevier (1967)

  57. Tondeur, P.: Foliations on Riemannian Manifolds. Universitext. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  58. Villani, C.: Hypocoercivity. Memoirs of the American Mathematical Society, AMS Vol. 202 (2009)

  59. Volsov, V. M.: Some types of calculation connected with averaging in the theory of non-linear vibrations. USSR Comput. Math. Math. Phys. 3(1), 1–64 (1962)

    Article  Google Scholar 

  60. Veretennikov, A.: On the averaging principle for systems of stochastic differential equations. Mathe. USSR Sbornik 69, 271–284 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  61. Veretennikov, A.: On large deviations in the averaging principle for SDEs with “full dependence”. Ann. Probab. 27, 284–296 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  62. Walcak, P.: Dynamics of Foliations, Groups and Pseudogroups. Birkhäuser Verlag (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Högele.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Högele, M.A., da Costa, P.H. Strong Averaging Along Foliated Lévy Diffusions with Heavy Tails on Compact Leaves. Potential Anal 47, 277–311 (2017). https://doi.org/10.1007/s11118-017-9615-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-017-9615-0

Keywords

Mathematics Subject Classification (2010)

Navigation