Skip to main content
Log in

Nodal solutions for fractional Schrödinger-Poisson problems

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider the following fractional Schrödinger-Poisson problem,

$$\begin{cases}\epsilon^{2s}(-\Delta)^{s}u+V(x)u+\phi{u}=\mid{u}\mid^{p-1}u, & x\in\mathbb{R}^N,\\(-\Delta)^t\phi=u^2, & x\in\mathbb{R}^N,\end{cases}$$

where ε > 0 is a small parameter, N ⩾ 3 and V(x) is a potential function. We construct non-radial sign-changing solutions, whose components may have spikes clustering at the local minimum point of V(x).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelouhab L, Bona J L, Felland M, et al. Nonlocal models for nonlinear, dispersive waves. Phys D, 1989, 40: 360–392

    Article  MathSciNet  Google Scholar 

  2. Alves C O, Souto M A S. Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains. Z Angew Math Phys, 2014, 65: 1153–1166

    Article  MathSciNet  Google Scholar 

  3. Azzollini A, Pomponio A. Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J Math Anal Appl, 2008, 345: 90–108

    Article  MathSciNet  Google Scholar 

  4. Benci V, Fortunato D. An eigenvalue problem for the Schrödinger-Maxwell equations. Topol Methods Nonlinear Anal, 1998, 11: 283–293

    Article  MathSciNet  Google Scholar 

  5. Cabré X, Tan J. Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv Math, 2010, 224: 2052–2093

    Article  MathSciNet  Google Scholar 

  6. Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Comm Partial Differential Equations, 2007, 32: 1245–1260

    Article  MathSciNet  Google Scholar 

  7. Capella A, Dávila J, Dupaigne L, et al. Regularity of radial extremal solutions for some non-local semilinear equations. Comm Partial Differential Equations, 2011, 36: 1353–1384

    Article  MathSciNet  Google Scholar 

  8. Chang S M, Gustafson S, Nakanishi K, et al. Spectra of linearized operators for NLS solitary waves. SIAM J Math Anal, 2008, 39: 1070–1111

    Article  MathSciNet  Google Scholar 

  9. Chen G. Multiple semiclassical standing waves for fractional nonlinear Schrödinger equations. Nonlinearity, 2015, 28: 927–949

    Article  MathSciNet  Google Scholar 

  10. Chen G, Zhang Y. Concentration phenomenon for fractional nonlinear Schrödinger equations. Comm Pure Appl Anal, 2014, 13: 2359–2376

    Article  Google Scholar 

  11. Dávila J, Pino M D, Serena D, et al. Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum. Anal PDE, 2015, 8: 1165–1235

    Article  MathSciNet  Google Scholar 

  12. Dávila J, Pino M D, Wei J. Concentrating standing waves for the fractional nonlinear Schrödinger equation. J Differential Equations, 2014, 256: 858–892

    Article  MathSciNet  Google Scholar 

  13. Fall M, Mahmoudi F, Valdinoci E. Ground states and concentration phenomena for the fractional Schrödinger equation. Nonlinearity, 2015, 28: 1937–1961

    Article  MathSciNet  Google Scholar 

  14. Felmer P, Quass A, Tan J. Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2012, 142: 1237–1262

    Article  MathSciNet  Google Scholar 

  15. Giammetta A R. Fractional Schrödinger-Poisson-Slater system in one dimension. ArXiv:1405.2796, 2014

  16. He Q, Long W. The concentration of solutions to a fractional Schrödinger equation. Z Angew Math Phys, 2016, 67: 1–19

    Article  Google Scholar 

  17. He X, Zou W. Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth. J Math Phys, 2012, 53: 023702

    Article  MathSciNet  Google Scholar 

  18. Ianni I. Solutions of the Schroödinger-Poisson problem concentrating on spheres, part II: Existence. Math Models Methods Appl Sci, 2009, 19: 877–910

    Article  MathSciNet  Google Scholar 

  19. Ianni I, Vaira G. On concentration of positive bound states for the Schrödinger-Poisson problem with potentials. Adv Nonlinear Stud, 2008, 8: 573–595

    Article  MathSciNet  Google Scholar 

  20. Ianni I, Vaira G. Solutions of the Schrödinger-Poisson problem concentrating on spheres, part I: Necessary condition. Math Models Methods Appl Sci, 2009, 19: 707–720

    Article  MathSciNet  Google Scholar 

  21. Kang X, Wei J. On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv Differential Equations, 2000, 5: 899–928

    MathSciNet  MATH  Google Scholar 

  22. Laskin N. Fractional quantum mechanics and Lévy path integrals. Phys Lett A, 2000, 268: 298–305

    Article  MathSciNet  Google Scholar 

  23. Laskin N. Fractional Schrödinger equation. Phys Rev E, 2002, 66: 31–35

    Article  MathSciNet  Google Scholar 

  24. Li G, Peng S, Yan S. Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system. Commun Contemp Math, 2010, 12: 1069–1092

    Article  MathSciNet  Google Scholar 

  25. Lin F H, Ni W M, Wei J. On the number of interior peak solutions for a singularly perturbed Neumann problem. Comm Pure Appl Math, 2007, 60: 252–281

    Article  MathSciNet  Google Scholar 

  26. Liu W. Infinitely many positive solutions for the fractional Schrödinger-Poisson system. Pacific J Math, 2017, 287: 439–464

    Article  MathSciNet  Google Scholar 

  27. Liu Z, Wang Z Q, Zhang J. Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system. Ann Mat Pura Appl (4), 2016, 4: 775–794

    Article  Google Scholar 

  28. Long W, Peng S, Yang J. Infinitely many positive solutions and sign-changing solutions for nonlinear fractional scalar field equations. Discret Contin Dyn Syst, 2016, 36: 917–939

    MathSciNet  MATH  Google Scholar 

  29. Murcia E, Siciliano G. Positive semiclassical states for a fractional Schrödinger-Poisson system. Differ Integral Equ, 2017, 30: 231–258

    MATH  Google Scholar 

  30. Nezza E D, Palatucci G, Valdinoci E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136: 521–573

    Article  MathSciNet  Google Scholar 

  31. Ruiz D. The Schrödinger-Poisson equation under the effect of a nonlinear local term. J Funct Anal, 2006, 237: 655–674

    Article  MathSciNet  Google Scholar 

  32. Ruiz D, Vaira G. Cluster solutions for the Schroödinger-Poisson-Slater problem around a local minimum of the potential. Rev Mat Iberoam, 2011, 27: 253–271

    Article  MathSciNet  Google Scholar 

  33. Rupert F, Enno L. Uniqueness and nondegeneracy of ground states for (−Δ)sQ + QQα+1 = 0 in ℝ. Acta Math, 2013, 210: 261–318

    Article  MathSciNet  Google Scholar 

  34. Rupert F, Enno L, Silvestre L. Uniqueness of radial solutions for the fractional Laplacian. Comm Pure Appl Math, 2016, 69: 1671–1726

    Article  MathSciNet  Google Scholar 

  35. Teng K. Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent. J Differential Equations, 2016, 261: 3061–3106

    Article  MathSciNet  Google Scholar 

  36. Wei J, Yan S. Infinitely many solutions for the prescribed scalar curvature problem on \(\mathbb{S}^{N}\). J Funct Anal, 2010, 258: 3048–3081

    Article  MathSciNet  Google Scholar 

  37. Yu Y, Zhao F, Zhao L. The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system. Calc Var Partial Differential Equations, 2017, 56: 4–28

    Article  Google Scholar 

  38. Zhang J. The existence and concentration of positive solutions for a nonlinear Schroödinger-Poisson system with critical growth. J Math Phys, 2014, 55: 031507

    Article  MathSciNet  Google Scholar 

  39. Zhang J, do Ó J M, Squassina M. Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity. Adv Nonlinear Stud, 2016, 16: 15–30

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant Nos. 11501264 and 11871253), the Natural Science Foundation of Jiangxi Province (Grant No. 20171BCB23030) and Jiangxi Provincial Department of Education Fund. The second author was supported by National Natural Science Foundation of China (Grant Nos. 11671179 and 11771300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, W., Yang, J. & Yu, W. Nodal solutions for fractional Schrödinger-Poisson problems. Sci. China Math. 63, 2267–2286 (2020). https://doi.org/10.1007/s11425-018-9452-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9452-y

Keywords

MSC(2010)

Navigation