Skip to main content
Log in

Alkylphthalides with intracellular triglyceride metabolism-promoting activity from the rhizomes of Cnidium officinale Makino

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Methanol extract of the Cnidium officinale Makino rhizome, which is used as a crude drug Cnidium Rhizome (Cnidii Rhizoma; “Senkyu” in Japanese) and is listed in the Japanese Pharmacopoeia XVIII, showed intracellular triglyceride metabolism-promoting activity in high glucose-pretreated HepG2 cells. Thirty-five constituents, including two new alkylphthalide glycosides, senkyunosides A (1) and B (2), and a neolignan with a new stereoisomeric structure (3), were isolated in the extract. Their stereostructures were elucidated based on chemical and spectroscopic evidence. Among the isolates, several alkylphthalides, (Z)-3-butylidene-7-methoxyphthalide (9) and senkyunolides G (10), H (14), and I (15), and a polyacetylene falcarindiol (26), were found to show significant activity without any cytotoxicity at 10 μM.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.

References

  1. The World Flora Online (2023) Ligusticum officinale (Makino) Kitag. https://wfoplantlist.org/plant-list/taxon/wfo-0000362443-2023-06?matched_id=wfo-0000612812&page=1. Accessed 22 January 2024

  2. Royal Botanic Gardens, Kew. Plants of the world online (2023). Ligusticum officinale (Makino) Kitag. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:844550-1. Accessed 22 January 2024

  3. The Ministry of Health, Labour and Welfare, Japan (2021) Crude drugs and related drugs in Japanese Pharamopoeia Eighteenth Edition (JP XVIII), English version. Cnidium rhizome, pp 1985–1986. https://www.mhlw.go.jp/content/11120000/000912390.pdf. Accessed 22 January 2024

  4. Kim H-G, Oh SM, Kim NW, Shim JH, Nam YH, Nguyen TN, Lee M-H, Lee DY, Kang TH, Baek N-I (2021) Three new phthalide glycosides from the rhizomes of Cnidium officinale and their recovery effect on damaged otic hair cells in zebrafish. Molecules 26:7034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bae K-E, Choi Y-W, Kim S-T, Kim Y-K (2011) Components of rhizome extract of Cnidium officinale Makino and their in vitro biological effects. Molecules 16:8833–8847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ningsih FN, Okuyama T, To S, Nishidono Y, Okumura T, Tanaka K, Ikeya Y, Nishizawa M (2020) Comparative analysis of anti-inflammatory activity of the constituents of the rhizome of Cnidium officinale using rat hepatocytes. Biol Pharm Bull 43:1867–1875

    Article  CAS  PubMed  Google Scholar 

  7. Lee KY, Kim JH, Kim EY, Yeom M, Jung HS, Sohn Y (2019) Water extract of Cnidii rhizoma suppress RANKL-induced osteoclastogenesis in RAW 264.7 cell by inhibiting NFATc1/c-Fos signaling and prevents ovariectomized bone loss in Sd-rat. BMC Complement Altern Med 19:207–219

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sim Y, Shin S (2014) Antibacterial activities of the essential oil from the leaves and rhizomes of Cnidium officinale Makino. J Essent Oil Res 26:452–457

    Article  CAS  Google Scholar 

  9. Jeong SI, Kwak DH, Lee S, Choo YK, Woo WH, Keum KS, Choi BK, Jung KY (2005) Inhibitory effects of Cnidium officinale Makino and Tabanus fulvus Meigan on the high glucose-induced proliferation of glomerular mesangial cells. Phytomedicine 12:648–655

    Article  CAS  PubMed  Google Scholar 

  10. Ozaki Y, Sekita S, Harada M (1989) Centrally acting muscle relaxant effect of phthalides (ligustilide, cnidilide, and senkyunolide) obtained from Cnidium officinale Makino. Yakugaku Zasshi 109:402–406

    Article  CAS  PubMed  Google Scholar 

  11. Lim EY, Kim JG, Lee J, Lee C, Shim J, Kim YT (2019) Analgesic effects of Cnidium officinale extracts on postoperative, neuropathic, and menopausal pain in rat models. Evid Based Complement Alternat Med 2019:9698727

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nakazawa K, Fujimori K, Inoue K, Sekita S, Takanaka A (1989) Effects of extract from a herbal drug, Cnidium rhizome (Senkyu), on contraction, heart rates and membrane potentials of isolated guinea pig atria. Yakugaku Zasshi 109:662–671

    Article  CAS  PubMed  Google Scholar 

  13. Jeong JB, Ju SY, Park JH, Lee JR, Yun KW, Kwon ST, Lim JH, Chung GY, Jeong HJ (2009) Antioxidant activity in essential oils of Cnidium officinale Makino and Ligsticum chuanxiong hort and their inhibitory effect on DNA damage and apoptosis induced by ultraviolet B in mammalian cell. Cancer Epidemiol 33:41–46

    Article  CAS  PubMed  Google Scholar 

  14. Jeong JE, Lee YJ, Choi YA, Park JM, Lee SM, Jo NY, Lee EY, Lee CK, Roh JD (2021) Seizure after subdural hematoma treated with combination western-Korean medicine. J Acupunct Res 38:72–78

    Article  Google Scholar 

  15. Namba T, Sekiya K, Kadota S, Hattori M, Katayama K, Koizumi T (1992) Studies on the baths with crude drug: the effects of Senkyu extracts as skin penetration enhancer. Yakugaku Zasshi 112:438–644

    Article  Google Scholar 

  16. Lee YM, Lee YR, Kim JS, Kim YH, Kim J (2015) Cnidium officinale and its bioactive compound, butylidenephthalide, inhibit laser-induced choroidal neovascularization in a rat model. Molecules 20:20699–20708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi H-S, Kim M-SL, Sawamura M (2002) Constituents of the essential oil of Cnidium officinale Makino, a Korean medicinal plant. Flavour Fragr J 17:49–53

    Article  CAS  Google Scholar 

  18. Noguchi T (1934) The chemical constituents of “Sen-Kyu.” Yakugaku Zasshi 54:913–937

    Article  CAS  Google Scholar 

  19. Mitsuhashi H, Muramatsu T, Nagai U, Nakano T, Ueno K (1963) Studies on the constituents of umbelliferae plants. VIII. Distribution of alkylphtalides in umbelliferae plants. Chem Pharm Bull 11:1317–1319

    Article  CAS  Google Scholar 

  20. Bohrmann H, Stahl E, Mitsuhashi H (1967) Studies of the constituents of umbelliferae plants. XIII. Chromatographic studies on the constituents of Cnidium officinale Makino. Chem Pharm Bull 15:1606–1608

    Article  CAS  Google Scholar 

  21. Yamagishi T, Kaneshima H (1977) Constituents of Cnidium officinale Makino. Structure of senkyunolide and gas chromatography-mass spectrometry of the related phthalides. Yakugaku Zasshi 97:237–243

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi M, Fujita M, Mitsuhashi H (1984) Components of Cnidium officinale Makino: occurrence of pregnenolone, coniferyl ferulate, and hydroxyphthalides. Chem Pharm Bull 32:3770–3773

    Article  CAS  Google Scholar 

  23. Kobayashi M, Fujita M, Mitsuhashi H (1987) Studies on the constituents of umbelliferae plants. XV. constituents of Cnidium officinale: occurrence of pregnenolone, coniferylferulate and hydroxyphthalides. Chem Pharm Bull 35:1427–1433

    Article  CAS  Google Scholar 

  24. Mali RS, Patil SR (1990) Synthesis of 3-butylidene-7-hydroxyphthalide. Syn Commun 20:167–173

    Article  CAS  Google Scholar 

  25. Tsukamoto T, Ishikawa Y, Miyazawa M (2005) Larvicidal and adulticidal activity of alkylphthalide derivatives from rhizome of Cnidium officinale against Drosophila melanogaster. J Agric Food Chem 53:5549–5553

    Article  CAS  PubMed  Google Scholar 

  26. Kim H-G, Nguyen TN, Lee Y-G, Lee M-H, Lee DY, Lee Y-H, Baek N-I (2021) New phenylalkanoids from the rhizome of Cnidium officinalis Makino. Appl Biol Chem 64:79

    Article  CAS  Google Scholar 

  27. Tomoda M, Ōhara N, Gonda R, Shimizu N, Takada K, Satoh Y, Shirai S (1992) An acidic polysaccharide having immunological activities from the rhizome of Cnidium officinale. Chem Pharm Bull 40:3025–3029

    Article  CAS  Google Scholar 

  28. Tomoda M, Ōhara N, Shimizu N, Gonda R (1994) Characterization of a novel glucan, which exhibits reticuloendothelial system-potentiating and anti-complementary activities, from the rhizome of Cnidium officinale. Chem Pharm Bull 42:630–633

    Article  CAS  Google Scholar 

  29. Tomoda M, Ōhara N, Shimizu N, Gonda R (1994) Characterization of a novel heteroglucan from the rhizome of Cnidium offcinale exhibiting high reticuloendothelial system-potentiating and anti-complementary activities. Biol Pharm Bull 17:973–976

    Article  CAS  PubMed  Google Scholar 

  30. Bellentani S, Tiribelli C, Saccoccio G, Sodde M, Fratti N, De Martin C, Cristianini G (1994) Prevalence of chronic liver disease in the general population of northern Italy: the dionysos study. Hepatology 20:1442–1449

    Article  CAS  PubMed  Google Scholar 

  31. El-Hassan AY, Ibrahim EM, Al-Mulnim FA, Nabhan AA, Chammas MY (2014) Fatty infiltration of the liver: analysis of prevalence, radiological and clinical features and influence on patient management. Br J Radiol 65:774–778

    Article  Google Scholar 

  32. Marceau P, Biron S, Hould FS, Marceau S, Simard S, Thung SN, Kral JG (1999) Liver pathology and the metabolic syndrome X in severe obesity. J Clin Endocrinol Metab 84:1513–1517

    Article  CAS  PubMed  Google Scholar 

  33. Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, McCullough AJ, Forlani G, Melchionda N (1999) Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 107:450–455

    Article  CAS  PubMed  Google Scholar 

  34. Gorgani-Firuzjaee S, Meshkani R (2015) SH2 domain-containing inositol 5-phosphatase (SHIP2) inhibition ameliorates high glucose-induced de-novo lipogenesis and VLDL production through regulating AMPK/mTOR/SREBP1 pathway and ROS production in HepG2 cells. Free Radic Biol Med 89:679–689

    Article  CAS  PubMed  Google Scholar 

  35. Yuk T, Kim Y, Yang J, Sung J, Jeong HS, Lee J (2018) Nobiletin inhibits hepatic lipogenesis via activation of AMP-activated protein kinase. Evid Based Complement Altanat Med 2018:7420265

    Google Scholar 

  36. Morikawa T, Xu F, Kashima Y, Matsuda H, Ninomiya K, Yoshikawa M (2004) Novel dolabellane-type diterpene alkaloids with lipid metabolism promoting activities from the seeds of Nigella sativa. Org Lett 6:869–872

    Article  CAS  PubMed  Google Scholar 

  37. Morikawa T, Xu F, Matsuda H, Ninomiya K, Yoshikawa M (2004) Nigellamines A3, A4, A5, and C, new dolabellane-type diterpene alkaloids, with lipid metabolism-promoting activities from the Egyptian medicinal food black cumin. Chem Pharm Bull 52:494–497

    Article  CAS  Google Scholar 

  38. Morikawa T, Ninomiya K, Xu F, Okumura N, Matsuda H, Muraoka O, Hayakawa T, Yoshikawa M (2013) Acylated dolabellane-type diterpenes from Nigella sativa seeds with triglyceride metabolism-promoting activity in high glucose-pretreated HepG2 cells. Phytochem Lett 6:198–204

    Article  CAS  Google Scholar 

  39. Muraoka O, Morikawa T, Zhang Y, Ninomiya K, Nakamura S, Matsuda H, Yoshikawa M (2009) Novel megastigmanes with lipid accumulation inhibitory and lipid metabolism promoting activities in HepG2 cells from Sedum sarmentosum. Tetrahedron 65:4143–4148

    Article  Google Scholar 

  40. Inoue T, Matsui Y, Kikuchi T, Yamada T, In Y, Muraoka O, Sakai C, Ninomiya K, Morikawa T, Tanaka R (2015) Carapanolides MeS from seeds of andiroba (Carapa guianensis, Meliaceae) and triglyceride metabolism-promoting activity in high glucose-pretreated HepG2 cells. Tetrahedron 71:2753–2760

    Article  CAS  Google Scholar 

  41. Nagatomo A, Ninomiya K, Marumoto S, Sakai C, Watanabe S, Ishikawa W, Manse Y, Kikuchi T, Yamada T, Tanaka R, Muraoka O, Morikawa T (2022) A gedunin-type limonoid, 7-deacetoxy-7-oxogedunin, from andiroba (Carapa guianensis Aublet) reduced intracellular triglyceride content and enhanced autophagy in HepG2 cells. Int J Mol Sci 23:13141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morikawa T, Nagatomo A, Oka T, Miki Y, Taira N, Shibano-Kitahara M, Hori Y, Muraoka O, Ninomiya K (2019) Glucose tolerance-improving activity of helichrysoside in mice and its structural requirements for promoting glucose and lipid metabolism. Int J Mol Sci 20:6322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saeki T, Yamamoto S, Akaki J, Tanaka T, Nakasone M, Ikeda H, Wang W, Inoue M, Manse Y, Ninomiya K, Motikawa T Ameliorative effect of bofutsushosan (fangfengtongshengsan) extract on the progression of aging-induced obesity. J Nat Med (submitted)

  44. Wei Y, Huang W, Gu Y (2013) Online isolation and purification of four phthalide compounds from Chuanxiong rhizoma using high-speed counter-current chromatography coupled with semi-preparative liquid chromatography. J Chromatogr A 1284:53–58

    Article  CAS  PubMed  Google Scholar 

  45. Schinkovitz A, Pro SM, Main M, Chen S-N, Jaki BU, Lankin DC, Pauli GF (2008) Dynamic nature of the ligustilide complex. J Nat Prod 71:1604–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Diao X, Deng P, Xie C, Li X, Zhong D, Zhang Y, Chen X (2013) Metabolism and pharmacokinetics of 3-n-butylphthalide (NBP) in humans: the role of cytochrome P450s and alcohol dehydrogenase in biotransformation. Drug Metab Dispos 41:430–444

    Article  CAS  PubMed  Google Scholar 

  47. Dong ZB, Li SP, Hong M, Zhu Q (2005) Hypothesis of potential active components in Angelica sinensis by using biomembrane extraction and high performance liquid chromatography. J Pharm Biomed Anal 38:664–669

    Article  CAS  PubMed  Google Scholar 

  48. Lim LS, Shen P, Gong YH, Yong EL (2006) Dimeric progestins from rhizomes of Ligusticum chuanxiong. Phytochemistry 67:728–734

    Article  CAS  PubMed  Google Scholar 

  49. Kreye O, Tóth T, Meier MAR (2011) Copolymers derived from rapeseed derivatives via ADMET and thiol-ene addition. Eur Polymer J 47:1804–1816

    Article  CAS  Google Scholar 

  50. Berim A, Schneider B, Petersen M (2007) Methyl allyl ether formation in plants: novel S-adenosyl l-methionine:coniferyl alcohol 9-O-methyltransferase from suspension cultures of three Linum species. Plant Mol Biol 64:279–291

    Article  CAS  PubMed  Google Scholar 

  51. Deng S, Chen S-N, Yao P, Nikolic D, van Breemen RB, Bolton JL, Fong HHS, Farnsworth NR, Pauli GF (2006) Serotonergic activity-guided phytochemical investigation of the roots of Angelica sinensis. J Nat Prod 69:536–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim JS, Kim JC, Shim SH, Lee EJ, Jin WY, Bae K, Son KH, Kim HP, Kang SS, Chang HW (2006) Chemical constituents of the root of Dystaenia takeshimana and their anti-inflammatory activity. Arch Pharm Res 29:617–623

    Article  CAS  PubMed  Google Scholar 

  53. Kozawa M, Fukumoto M, Matsuyama Y, Baba K (1983) Chemical studies on the constituents of the Chinese crude drug “Quiang Huo.” Chem Pharm Bull 31:2712–2717

    Article  CAS  Google Scholar 

  54. Li L-J, Su Y-F, Yan S-L (2016) Three new phthalide glycosides from the rhizomes of Ligusticum chuanxiong. Phytochem Lett 17:14–17

    Article  Google Scholar 

  55. Miyase T, Ueno A, Takizawa N, Kobayashi H, Oguchi H (1988) Studies on the glycosides of Epimedium grandiflorum Morr. var. thunbergianum (Miq.) Nakai. III. Chem Pharm Bull 36:2475–2484

    Article  CAS  Google Scholar 

  56. Morikawa T, Manse Y, Luo F, Fukui H, Inoue Y, Kaieda T, Ninomiya K, Muraoka O, Yoshikawa M (2021) Indole glycosides from Calanthe discolor with proliferative activity on human hair follicle dermal papilla cells. Chem Pharm Bull 69:464–471

    Article  CAS  Google Scholar 

  57. Wang L-B, Morikawa T, Nakamura S, Ninomiya K, Matsuda H, Muraoka O, Wu L-J, Yoshikawa M (2009) Medicinal flowers.XXVIII. structures of five new glycosides, everlastosides A, B, C, D, and E, from the flowers of Helichrysum arenarium. Heterocycles 78:1235–1242

    Article  CAS  Google Scholar 

  58. Morikawa T, Zhang Y, Nakamura S, Matsuda H, Muraoka O, Yoshikawa M (2007) Bioactive constituents from Chinese natural medicines. XXII. Absolute structures of new megastigmane glycosides, sedumosides E1, E2, E3, F1, F2, and G, from Sedum sarmentosum (Crassulaceae). Chem Pharm Bull 55:435–441

    Article  CAS  Google Scholar 

  59. Kobayashi M, Mitsuhashi H (1987) Studies on the constituents of Umbelliferae plants. XVII. Structures of three new ligustilide derivatives from Ligusticum wallichii. Chem Pharm Bull 35:4789–4792

    Article  CAS  Google Scholar 

  60. Jiao XZ, Xie P, Zu LS, Liang XT (2003) Stereoselective synthesis of (±)-neocnidilide. Chin Chem Lett 14:127–129

    CAS  Google Scholar 

  61. Kim KH, Ha SK, Choi SU, Kim SY, Lee KR (2013) Phenolic constituents from the twigs of Euonymus alatus and their cytotoxic and anti-inflammatory activity. Planta Med 79:361–364

    Article  CAS  PubMed  Google Scholar 

  62. Otsuka H, Takeuchi M, Inoshiri S, Sato T, Yamasaki K (1989) Phenolic compounds from Coix lachryma-jobi var. Ma-yuen Phytochem 28:883–886

    Article  CAS  Google Scholar 

  63. Yang X-W, Zhao P-J, Ma Y-L, Xiao H-T, Zuo Y-Q, He H-P, Li L, Hao X-J (2007) Mixed lignan-neolignans from Tarenna attenuate. J Nat Prod 70:521–525

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Division of Joint Research Center, Kindai University for the NMR and MS measurements, and Editage (www.editage.com) for English language editing.

Funding

This work was supported by the JSPS KAKENHI, Japan [Grant Number: 22K06688 (T.M.)].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, T.M.; methodology, T.M. and K.N.; investigation, N.I., S.Y., M.S., and Y.M.; writing, review, and editing, T.M. All authors have read and approved the published version of the manuscript.

Corresponding author

Correspondence to Toshio Morikawa.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 10273 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morikawa, T., Inoue, N., Yamamoto, S. et al. Alkylphthalides with intracellular triglyceride metabolism-promoting activity from the rhizomes of Cnidium officinale Makino. J Nat Med (2024). https://doi.org/10.1007/s11418-024-01799-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11418-024-01799-x

Keywords

Navigation