Skip to main content

Advertisement

Log in

Methyl allyl ether formation in plants: novel S-adenosyl l-methionine:coniferyl alcohol 9-O-methyltransferase from suspension cultures of three Linum species

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A novel 41 kDa methyltransferase displaying high regiospecificity towards the allylic hydroxyl moiety of coniferyl alcohol was cloned from suspension cultures of Linum nodiflorum L. and expressed in E. coli. The apparent K m for coniferyl alcohol is 7.23 μM with a V max of 707.5 pkat mg−1 protein at 30°C, whereas the K m for the co-substrate S-adenosyl-l-methionine is 18.5 μM. Structure-function relationship studies revealed stringent structure requirements. Even minor substructure deviations as the side-chain saturation or changes in the phenyl ring substitution result in activities decreased by 75–90%. Crotyl and allyl alcohols are not substrates, confirming that the aromatic ring itself is indispensable, and solely the derivatives with a C3 side-chain are accepted. The enzyme shares only similarities under 46% on amino acid level with other known methyltransferases. The designated reaction product, coniferyl alcohol 9-methyl ether, could be detected in suspension cells. The highest content of up to 0.02% of the dry mass is concurrent with an increase of the specific enzyme activity that reaches its maximum of 3.94 pkat mg−1 on day 6 of the culture period. Transcript levels estimated by semi-quantitative RT-PCR remain constant until day 6 and recede thereafter. The corresponding methyltransferase from Linum flavum L. differs mainly by one short variable fragment. Biochemical characterization revealed a higher catalytic efficiency and a slightly broader substrate plasticity together with a lower sensitivity to the presence of Zn2+, Cu2+ and Co2+. This is to our knowledge the first report of a regiospecific allylic O-methylation of phenylpropanoids in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CA:

coniferyl alcohol

CA-Me:

coniferyl alcohol 9-methyl ether

DAD:

diode array detector

D.W.:

dry weight

IPTG:

isopropyl-1-thio-β-d-galactopyranoside

SAM:

S-adenosyl-l-methionine

(SM)OMT:

(small molecule) O-methyltransferase.

References

  • Al-Qsous S, Carpentier E, Klein-Eude D et al (2004) Identification and isolation of a pectin methyltransferase isoform that could be involved in flax cell wall stiffening. Planta 219:369–378

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Burga L, Wellmann F, Lukacin R et al (2005) Unusual pseudosubstrate specificity of a novel 3,5-dimethoxyphenol O-methyltransferase cloned from Ruta graveolens L. Arch Biochem Biophys 440:54–64

    Article  PubMed  CAS  Google Scholar 

  • Burge CB, Karlin S (1998) Finding the genes in genomic DNA. Curr Opin Struct Biol 8:346–354

    Article  PubMed  CAS  Google Scholar 

  • Chiron H, Drouet A, Claudot A-C et al (2000) Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris L.). Plant Mol Biol 44:733–745

    Article  PubMed  CAS  Google Scholar 

  • Christensen AB, Gregersen PL, Olsen CE et al (1998) A flavonoid 7-O-methyltransferase is expressed in barley leaves in response to pathogen attack. Plant Mol Biol 36:219–227

    Article  PubMed  CAS  Google Scholar 

  • Coiner H, Schröder G, Wehinger E et al (2006) Methylation of sulfhydryl groups: a new function for a family of small molecule plant O-methyltransferases. Plant J 46:193–205

    Article  PubMed  CAS  Google Scholar 

  • D’Auria JC, Chen F, Pichersky E (2003) The SABATH family of MTs in Arabidopsis thaliana and other plant species. Rec Adv Phytochem 37:253–283

    CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation–version II. Plant Mol Biol Rep 1:19–21

    CAS  Google Scholar 

  • Dewick PM (2002) Medicinal natural products–a biosynthetic approach. Wiley, Chichester

    Google Scholar 

  • Effmert U, Saschenbrecker S, Ross J et al (2005) Floral benzenoid carboxylmethyltransferases: from in vitro to in planta function. Phytochemistry 66:1211–1230

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP-Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Ferrer JL, Zubieta C, Dixon RA et al (2005) Crystal structures of alfalfa caffeoyl coenzyme A 3-O-methyltransferase. Plant Physiol 137:1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Frick S, Kutchan TM (1999) Molecular cloning and functional expression of O-methyltransferases common to isoquinoline alkaloid and phenylpropanoid biosynthesis. Plant J 17:329–339

    Article  PubMed  CAS  Google Scholar 

  • Gang DR, Lavid N, Zubieta C et al (2002) Characterization of phenylpropene O-methyltransferases from Sweet Basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell 14:505–519

    Article  PubMed  CAS  Google Scholar 

  • Giuliano G, Bartley GE, Scolnik PA (1993) Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5:379–387

    Article  PubMed  CAS  Google Scholar 

  • Gonnet GH, Cohen MA, Benner SA (1992) Exhaustive matching of the entire protein sequence database. Science 256:1443–1445

    Article  PubMed  CAS  Google Scholar 

  • Ibdah M, Zhang XH, Schmidt J et al (2003) A novel Mg2+-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. J Biol Chem 278:43961–43972

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim RK, Bruneau A, Bantignies B (1998) Plant O-methyltransferases: molecular analysis, common signature and classification. Plant Mol Biol 36:1–10

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim RK, De Luca V, Khouri H et al (1987) Enzymology and compartmentation of polymethylated flavonol glucosides in Chrysosplenium americanum. Phytochemistry 26:1237–1245

    Article  Google Scholar 

  • Ito C, Itoigawa M, Otsuka T et al (2000) Constituents of Boronia pinnata. J Nat Prod 63:1344–1348

    Article  PubMed  CAS  Google Scholar 

  • Joshi CP, Chiang VL (1998) Conserved sequence motifs in plant S-adenosyl-l-methionine-dependent methyltransferases. Plant Mol Biol 37:663–674

    Article  PubMed  CAS  Google Scholar 

  • Konuklugil B, Schmidt TJ, Alfermann AW (1999) Accumulation of aryltetralin lactone lignans in cell suspension cultures of Linum nodiflorum. Planta Med 65:587–588

    Article  PubMed  CAS  Google Scholar 

  • Kuhlmann S, Kranz K, Lücking B et al (2002) Aspects of cytotoxic lignan biosynthesis in suspension cultures of Linum nodiflorum. Phytochem Rev 1:37–43

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lavid N, Wang J, Shalit M et al (2002) O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. Plant Physiol 129:1899–1907

    Article  PubMed  CAS  Google Scholar 

  • Lukacin R, Matern U, Specker S et al (2004) Cations modulate the substrate specificity of bifunctional class I O-methyltransferase from Ammi majus. FEBS Lett 577:367–370

    Article  PubMed  CAS  Google Scholar 

  • Meng H, Campbell WH (1996) Characterization and site-directed mutagenesis of aspen lignin-specific O-methyltransferase expressed in Escherichia coli. Arch Biochem Biophys 330:329–341

    Article  PubMed  CAS  Google Scholar 

  • Mohagheghzadeh A, Hemmati S, Mehregan I et al (2003) Linum persicum: Lignans and placement in Linaceae. Phytochem Rev 2:363–369

    Article  CAS  Google Scholar 

  • Murata J, De Luca V (2005) Localization of tabersonine 16-hydroxylase and 16-OH tabersonine 16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant J 44:581–594

    Article  PubMed  CAS  Google Scholar 

  • Muzac I, Wang J, Anzellotti D et al (2000) Functional expression of an Arabidopsis cDNA clone encoding a flavonol 3′-O-methyltransferase and characterization of the gene product. Arch Biochem Biophys 375:385–388

    Article  PubMed  CAS  Google Scholar 

  • Naito T, Niitsu K, Ikeya Y et al (1992) A phthalide and 2-farnesyl-6-methyl benzoquinone from Ligusticum chuangxiong. Phytochemistry 31:1787–1789

    Article  CAS  Google Scholar 

  • Noel JP, Dixon RA, Pichersky E et al (2003) Structural, functional, and evolutionary basis for methylation of plant small molecules. Rec Adv Phytochem 37:37–58

    Article  CAS  Google Scholar 

  • Ounaroon A, Decker G, Schmidt J et al (2003) (R,S)-reticuline 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum – cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J 36:808–819

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  PubMed  CAS  Google Scholar 

  • Pistelli L, Bilia AR, Bertoli A et al (1995) Phenylpropanoids from Bupleurum fruticosum. J Nat Prod 58:112–116

    Article  CAS  Google Scholar 

  • Roje S (2006) S-adenosyl-l-methionine: beyond a universal methyl group donor. Phytochemistry 67:1686–1698

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Press

  • Schröder G, Wehinger E, Schröder J (2002) Predicting the substrates of cloned O-methyltransferases. Phytochemistry 59:1–8

    Article  PubMed  Google Scholar 

  • Schröder G, Wehinger E, Lukacin R et al (2004) Flavonoid methylation: a novel 4′-O-methyltransferase from Catharanthus roseus, and evidence that partially methylated flavanones are substrates of four different flavonoid dioxygenases. Phytochemistry 65:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Schwab W (2003) Metabolome diversity: too few genes, too many metabolites? Phytochemistry 62:837–849

    Article  PubMed  CAS  Google Scholar 

  • Smollny T, Wichers HJ, Kalenberg S et al (1998) Accumulation of podophyllotoxin and related lignans in cell suspension cultures of Linum album. Phytochemistry 48:975–979

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Velasco L, Goffman FD (2000) Tocopherol, plastochromanol and fatty acid patterns in the genus Linum. Plant Syst Evol 221:77–88

    Article  CAS  Google Scholar 

  • Wang J, Pichersky E (1999) Identification of specific residues involved in substrate discrimination in two plant O-methyltransferases. Arch Biochem Biophys 368:172–180

    Article  PubMed  CAS  Google Scholar 

  • Weid M, Ziegler J, Kutchan TM (2004) The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc Natl Acad Sci USA 101:13957–13962

    Article  PubMed  CAS  Google Scholar 

  • Wein M, Lavid N, Lunkenbein S et al (2002) Isolation, cloning and expression of a multifunctional O-methyltransferase capable of forming 2,5-dimethyl-4-methoxy-3(2H)-furanone, one of the key aroma compounds in strawberry fruits. Plant J 31:755–765

    Article  PubMed  CAS  Google Scholar 

  • Wichers HJ, Harkes MP, Arroo RRJ (1990) Occurrence of 5-methoxypodophyllotoxin in plants, cell cultures and regenerated plants of Linum flavum. Plant Cell Tiss Org Culture 23:93–100

    Article  CAS  Google Scholar 

  • Yoneyama N, Morimoto H, Ye CX et al (2006) Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme. Mol Gen Genom 275:125–135

    Article  CAS  Google Scholar 

  • Zubieta C, He X-Z, Dixon RA et al (2001) Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nature Struct Biol 8:271–279

    Article  PubMed  CAS  Google Scholar 

  • Zubieta C, Kota P, Ferrer JL et al (2002) Structural basis for the modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase. Plant Cell 14:1265–1277

    Article  PubMed  CAS  Google Scholar 

  • Zubieta C, Ross JR, Koscheski P et al (2003) Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell 15:1704–1716

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Prof. Dr. Wibke Diederich (Institut für Pharmazeutische Chemie, Philipps-Universität Marburg) and her team for synthesizing for us 3,4-dimethoxycinnamyl alcohol. The financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maike Petersen.

Electronic supplementary material

Below is the link to the electronic supplementary material

11103_2007_9151_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berim, A., Schneider, B. & Petersen, M. Methyl allyl ether formation in plants: novel S-adenosyl l-methionine:coniferyl alcohol 9-O-methyltransferase from suspension cultures of three Linum species. Plant Mol Biol 64, 279–291 (2007). https://doi.org/10.1007/s11103-007-9151-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9151-1

Keywords

Navigation