Skip to main content
Log in

The marine Penicillium sp. GGF16-1-2 metabolite dicitrinone G inhibits pancreatic angiogenesis by regulating the activation of NLRP3 inflammasome

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Citrinin derivatives have been found to have various pharmacological activities, such as anti-inflammatory, anti-tumor, and antioxidant effects. Dicitrinone G (DG) was a new citrinin dimer isolated from marine-derived fungus Penicillium sp. GGF 16-1-2 which has potential activity. Here, we aim to investigate whether DG has anti-pancreatic cancer activity. In xenograft tumor model, 2 × 106 BXPC-3 cells were injected into the hind flank of NU/NU nude mice by subcutaneously for 2 weeks followed by treating with DG (0.25, 0.5, 1 mg/kg) and 5-FU (30 mg/kg) for 4 weeks. Tumor volume and weight were measured, and the expression of CD31, IL-18, NLRP3, and Caspase-1 in tumor tissue were detected. In vitro, HUVECs were treated with conditioned medium (CM) derived from BXPC-3 cells, the effects of DG on angiogenesis were detected by tube formation and western blot analysis. In vivo studies showed that the tumor growth and angiogenesis were greatly suppressed. The tumor weight inhibition rates of DG and 5-FU groups were about 42.36%, 38.94%, 43.80%, and 31.88%. Furthermore, the expression of CD31 and Caspase-1 were decreased. In vitro, CM derived from BXPC-3 cells which treated with DG could inhibit the tube formation and expression of pro-angiogenic NICD in HUVECs. Our study suggests that DG could suppress angiogenesis via the NLRP3/IL-18 pathway and may have the potential to inhibit tumor development.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen W, Zheng R, Baade PD et al (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66:115–132. https://doi.org/10.3322/caac.21338

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  3. Torphy RJ, Fujiwara Y, Schulick RD (2020) Pancreatic cancer treatment: better, but a long way to go. Surg Today 50:1117–1125. https://doi.org/10.1007/s00595-020-02028-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kanugula AK, Adapala RK, Jamaiyar A et al (2021) Endothelial TRPV4 channels prevent tumor growth and metastasis via modulation of tumor angiogenesis and vascular integrity. Angiogenesis 24:647–656. https://doi.org/10.1007/s10456-021-09775-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hao F, Zhimian S, Yanhu L et al (2022) Rare carbon-bridged citrinin dimers from the starfish-derived symbiotic fungus Penicillium sp. GGF16-1-2. Mar Drugs 20:443

    Article  Google Scholar 

  6. Zhu Y, Ouyang Z, Du H et al (2022) New opportunities and challenges of natural products research: when target identification meets single-cell multiomics. Acta Pharm Sin B 12:4011–4039. https://doi.org/10.1016/j.apsb.2022.08.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Park SC, Julianti E, Ahn S et al (2019) Phenalenones from a marine-derived fungus Penicillium Sp. Mar Drugs 17:176. https://doi.org/10.3390/md17030176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Galdiero MR, Marone G, Mantovani A (2018) Cancer inflammation and cytokines. Cold Spring Harb Perspect Biol 10:a028662. https://doi.org/10.1101/cshperspect.a028662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Koliaraki V, Prados A, Armaka M et al (2020) The mesenchymal context in inflammation, immunity and cancer. Nat Immunol 21:974–982. https://doi.org/10.1038/s41590-020-0741-2

    Article  PubMed  CAS  Google Scholar 

  10. Aoe M, Ueno-Iio T, Shibakura M et al (2017) Lavender essential oil and its main constituents inhibit the expression of TNF-alpha-induced cell adhesion molecules in endothelial cells. Acta Med Okayama 71:493–503. https://doi.org/10.18926/AMO/55586

    Article  PubMed  CAS  Google Scholar 

  11. Todoric J, Antonucci L, Karin M (2016) Targeting inflammation in cancer prevention and therapy. Cancer Prev Res 9:895–905. https://doi.org/10.1158/1940-6207.CAPR-16-0209

    Article  CAS  Google Scholar 

  12. Esmailbeig M, Ghaderi A (2017) Interleukin-18: a regulator of cancer and autoimmune diseases. Eur Cytokine Netw 28:127–140. https://doi.org/10.1684/ecn.2018.0401

    Article  PubMed  CAS  Google Scholar 

  13. Tezcan G, Garanina EE, Alsaadi M et al (2020) Therapeutic potential of pharmacological targeting NLRP3 inflammasome complex in cancer. Front in immunol 11:607881. https://doi.org/10.3389/fimmu.2020.607881

    Article  CAS  Google Scholar 

  14. Zhang M, Shi Z, Peng X et al (2023) NLRP3 inflammasome-mediated pyroptosis induce notch signal activation in endometriosis angiogenesis. Mol Cell Endocrinol 574:111952. https://doi.org/10.1016/j.mce.2023.111952

    Article  PubMed  CAS  Google Scholar 

  15. Fan H, Shi ZM, Lei YH et al (2022) Rare carbon-bridged citrinin dimers from the starfish-derived symbiotic fungus Penicillium sp. GGF16-1-2. Mar Drugs 20:433. https://doi.org/10.3390/md20070443

    Article  CAS  Google Scholar 

  16. Das S, Shapiro B, Vucic EA et al (2020) Tumor cell-derived il1beta promotes desmoplasia and immune suppression in pancreatic cancer. Can Res 80:1088–1101. https://doi.org/10.1158/0008-5472.CAN-19-2080

    Article  CAS  Google Scholar 

  17. Bukowski K, Kciuk M, Kontek R (2020) Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci 21:3233. https://doi.org/10.3390/ijms21093233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. de Oliveira Filho JWG, Andrade T, de Lima RMT et al (2021) Citrinin against breast cancer: a cytogenotoxicological study. Phytother Res 35:504–516. https://doi.org/10.1002/ptr.6830

    Article  PubMed  CAS  Google Scholar 

  19. Sun MH, Li XH, Xu Y et al (2020) Citrinin exposure disrupts organelle distribution and functions in mouse oocytes. Environ Res 185:109476. https://doi.org/10.1016/j.envres.2020.109476

    Article  PubMed  CAS  Google Scholar 

  20. Aydin Y, Orta Yilmaz B, Yildizbayrak N et al (2021) Evaluation of citrinin-induced toxic effects on mouse sertoli cells. Drug Chem Toxicol 44:559–565. https://doi.org/10.1080/01480545.2019.1614021

    Article  PubMed  CAS  Google Scholar 

  21. Dumitrescu T, Uscatu CD, Alexandru DO et al (2015) Correlations between intratumoral microvessel density and histopathological type or neoadjuvant radiotherapy for rectal carcinoma. Curr Health Sci J 41:152–157. https://doi.org/10.12865/CHSJ.41.02.10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Li Z, Shi L, Li X et al (2021) RNF144A-AS1, a TGF-beta1- and hypoxia-inducible gene that promotes tumor metastasis and proliferation via targeting the miR-30c-2–3p/LOX axis in gastric cancer. Cell Biosci 11:177. https://doi.org/10.1186/s13578-021-00689-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yang XM, Han HX, Sui F et al (2010) Slit-Robo signaling mediates lymphangiogenesis and promotes tumor lymphatic metastasis. Biochem Biophys Res Commun 396:571–577. https://doi.org/10.1016/j.bbrc.2010.04.152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wang M, Li B, Sun H et al (2019) Correlation study between dual source CT perfusion imaging and the microvascular composition of solitary pulmonary nodules. Lung Cancer 130:115–120. https://doi.org/10.1016/j.lungcan.2019.02.013

    Article  PubMed  Google Scholar 

  25. Wang WQ, Liu L, Xu HX et al (2013) Intratumoral alpha-SMA enhances the prognostic potency of CD34 associated with maintenance of microvessel integrity in hepatocellular carcinoma and pancreatic cancer. PLoS ONE 8:e71189. https://doi.org/10.1371/journal.pone.0071189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lu L, Yan S, Chen M et al (2021) Diagnostic values of dermatoscopy and CD31 expression in cutaneous lymphangioma circumscriptum. Front Med 8:738815. https://doi.org/10.3389/fmed.2021.738815

    Article  Google Scholar 

  27. Korbel C, Gerstner MD, Menger MD et al (2018) Notch signaling controls sprouting angiogenesis of endometriotic lesions. Angiogenesis 21:37–46. https://doi.org/10.1007/s10456-017-9580-7

    Article  PubMed  CAS  Google Scholar 

  28. Geng Y, Fan J, Chen L et al (2021) A notch-dependent inflammatory feedback circuit between macrophages and cancer cells regulates pancreatic cancer metastasis. Cancer Res 81:64–76. https://doi.org/10.1158/0008-5472.CAN-20-0256

    Article  PubMed  Google Scholar 

  29. Wang H, Tian Y, Wang J et al (2013) Inflammatory cytokines induce notch signaling in nucleus pulposus cells: implications in intervertebral disc degeneration. J Biol Chem 288:16761–16774. https://doi.org/10.1074/jbc.M112.446633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Carta S, Penco F, Lavieri R et al (2015) Cell stress increases ATP release in NLRP3 inflammasome-mediated autoinflammatory diseases, resulting in cytokine imbalance. Proc Natl Acad Sci U S A 112:2835–2840. https://doi.org/10.1073/pnas.1424741112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kobori T, Hamasaki S, Kitaura A et al (2018) Interleukin-18 amplifies macrophage polarization and morphological alteration, leading to excessive angiogenesis. Front Immunol 9:334. https://doi.org/10.3389/fimmu.2018.00334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Su CM, Wang IC, Liu SC et al (2017) Hypoxia induced mitogenic factor (HIMF) triggers angiogenesis by increasing interleukin-18 production in myoblasts. Sci Rep 7:7393. https://doi.org/10.1038/s41598-017-07952-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Couchie D, Vaisman B, Abderrazak A et al (2017) Human plasma thioredoxin-80 increases with age and in ApoE(-/-) Mice induces inflammation, angiogenesis, and atherosclerosis. Circulation 136:464–475. https://doi.org/10.1161/CIRCULATIONAHA.117.027612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the participants for their interest on this study.

Funding

This work was financially supported the Special Project for Marine Economic Department of Natural Resources of Guangdong Province (GDNRC[2021]48, GDNRC[2023]37 and GDNRC [2020]039); the National Natural Science Foundation of China (No. 82274130, No. 82273845 and No. 81741160); National Key Research and Development Program of China (2017YFC1700400 and 2017YFC1700404); Guangdong Natural Science Funds for Distinguished Young Scholars (20181B030306027); Major Program of Science and Technology Program of Guangzhou (202103000044); Special Program for Key Fields of Colleges and Universities of Guangdong (2021ZDZX2041) and Wuhan Health Research Fund (WZ20Y03); Hubei Provincial Natural Science Foundation of China (2021CFB424).

Author information

Authors and Affiliations

Authors

Contributions

ZS, MZ, HF, YC, SD, FZ, JL, JJ, YL, and QC performed the experiments and collected the data; ZS and YC analyzed the data; WW, CZ, and YC discussed the results and commented on the manuscript; YC designed the study and wrote the manuscript; BW corrected the grammar mistakes in the revised manuscript, ZS, MZ, HF contributed equally to this study. All authors have read and agreed to the version of the manuscript.

Corresponding authors

Correspondence to Wei Wang, Cuixian Zhang or Yang Chen.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 248 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Zhang, M., Fan, H. et al. The marine Penicillium sp. GGF16-1-2 metabolite dicitrinone G inhibits pancreatic angiogenesis by regulating the activation of NLRP3 inflammasome. J Nat Med 78, 78–90 (2024). https://doi.org/10.1007/s11418-023-01749-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01749-z

Keywords

Navigation