Skip to main content

Cucurbitacin B induces DNA damage and autophagy mediated by reactive oxygen species (ROS) in MCF-7 breast cancer cells

Abstract

Cucurbitacin B (Cuc B), a natural compound extracted from cucurbitaceous plants, demonstrated potent anticancer activities, while the underlying mechanisms remain unclear. We investigated the anticancer effect of Cuc B on MCF-7 breast cancer cells. Cuc B drastically decreased cell viability in a concentration-dependent manner. Cuc B treatment caused DNA damage, as shown by long tails in the comet assay and increased γH2AX protein expression. Immunofluorescence staining showed that Cuc B treatment induced nuclear γH2AX foci. Cuc B activated DNA damage pathways by phosphorylation of ATM/ATR [two large phosphatidylinositol-3-kinase-like kinase family (PIKKs) members]. Furthermore, it also induced autophagy, as evidenced by monodansylcadaverine (MDC) staining and autophagic protein expression. In addition, Cuc B treatment led to increased reactive oxygen species (ROS) formation, which was inhibited by N-acetyl-l-cysteine (NAC) pretreatment. NAC pretreatment inhibited Cuc-B-induced DNA damage and autophagy. Taken together, these results suggest that ROS-mediated Cuc-B-induced DNA damage and autophagy in MCF-7 cells, which provides new insights into the anticancer molecular mechanism of Cuc B.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Chen JC, Chiu MH, Nie RL, Cordell GA, Qiu SX (2005) Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat Prod Rep 22:386–399

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Chen X, Bao J, Guo J, Ding Q, Lu J, Huang M, Wang Y (2012) Biological activities and potential molecular targets of cucurbitacins: a focus on cancer. Anticancer Drugs 23:777–787

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Liu T, Zhang M, Zhang H, Sun C, Deng Y (2008) Inhibitory effects of cucurbitacin B on laryngeal squamous cell carcinoma. Eur Arch Otorhinolaryngol 265:1225–1232

    Article  PubMed  Google Scholar 

  4. 4.

    Thoennissen NH, Iwanski GB, Doan NB, Okamoto R, Lin P, Abbassi S, Song JH, Yin D, Toh M, Xie WD (2009) Cucurbitacin B induces apoptosis by inhibition of the JAK/STAT pathway and potentiates antiproliferative effects of gemcitabine on pancreatic cancer cells. Cancer Res 69:5876–5884

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Zhang M, Zhang H, Sun C, Shan X, Yang X, Li-Ling J, Deng Y (2009) Targeted constitutive activation of signal transducer and activator of transcription 3 in human hepatocellular carcinoma cells by cucurbitacin B. Cancer Chemother Pharmacol 63:635–642

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Chan KT, Meng FY, Li Q, Ho CY, Lam TS, To Y, Lee WH, Li M, Chu KH, Toh M (2010) Cucurbitacin B induces apoptosis and S phase cell cycle arrest in BEL-7402 human hepatocellular carcinoma cells and is effective via oral administration. Cancer Lett 294:118–124

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Zhang Y, Ouyang D, Xu L, Ji Y, Zha Q, Cai J, He X (2011) Cucurbitacin B induces rapid depletion of the G-actin pool through reactive oxygen species-dependent actin aggregation in melanoma cells. Acta Biochim Biophys Sin (Shanghai) 43:556–567

    CAS  Article  Google Scholar 

  8. 8.

    Kausar H, Munagala R, Bansal SS, Aqil F, Vadhanam MV, Gupta RC (2013) Cucurbitacin B potently suppresses non-small-cell lung cancer growth: identification of intracellular thiols as critical targets. Cancer Lett 332:35–45

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Liu T, Peng H, Zhang M, Deng Y, Wu Z (2010) Cucurbitacin B, a small molecule inhibitor of the Stat3 signaling pathway, enhances the chemosensitivity of laryngeal squamous cell carcinoma cells to cisplatin. Eur J Pharmacol 641:15–22

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Iwanski GB, Lee DH, En-Gal S, Doan NB, Castor B, Vogt M, Toh M, Bokemeyer C, Said JW, Thoennissen NH (2010) Cucurbitacin B, a novel in vivo potentiator of gemcitabine with low toxicity in the treatment of pancreatic cancer. Br J Pharmacol 160:998–1007

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  11. 11.

    Lee DH, Thoennissen NH, Goff C, Iwanski GB, Forscher C, Doan NB, Said JW, Phillip Koeffler H (2011) Synergistic effect of low-dose cucurbitacin B and low-dose methotrexate for treatment of human osteosarcoma. Cancer Lett 306:161–170

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Aribi A, Gery S, Lee DH, Thoennissen NH, Thoennissen GB, Alvarez R, Ho Q, Lee K, Doan NB, Chan KT (2013) The triterpenoid cucurbitacin B augments the antiproliferative activity of chemotherapy in human breast cancer. Int J Cancer 132:2730–2737

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  13. 13.

    Wakimoto N, Yin D, O’Kelly J, Haritunians T, Karlan B, Said J, Xing H, Koeffler HP (2008) Cucurbitacin B has a potent antiproliferative effect on breast cancer cells in vitro and in vivo. Cancer Sci 99:1793–1797

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Gupta P, Srivastava SK (2014) Inhibition of Integrin-HER2 signaling by Cucurbitacin B leads to in vitro and in vivo breast tumor growth suppression. Oncotarget 5:1812–1828

    PubMed Central  PubMed  Google Scholar 

  15. 15.

    Duangmano S, Sae-Lim P, Suksamrarn A, Domann FE, Patmasiriwat P (2012) Cucurbitacin B inhibits human breast cancer cell proliferation through disruption of microtubule polymerization and nucleophosmin/B23 translocation. BMC Complement Altern Med 12:185

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  16. 16.

    Duangmano S, Dakeng S, Jiratchariyakul W, Suksamrarn A, Smith DR, Patmasiriwat P (2010) Antiproliferative effects of cucurbitacin B in breast cancer cells: down-regulation of the c-Myc/hTERT/telomerase pathway and obstruction of the cell cycle. Int J Mol Sci 11:5323–5338

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. 17.

    Wakimoto N, Yin D, O’Kelly J, Haritunians T, Karlan B, Said J, Xing H, Koeffler HP (2008) Cucurbitacin B has a potent antiproliferative effect on breast cancer cells in vitro and in vivo. Cancer Sci 99:1793–1797

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Dakeng S, Duangmano S, Jiratchariyakul W, Up Y, Bogler O, Patmasiriwat P (2012) Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: reduction of Wnt-associated proteins and reduced translocation of galectin-3-mediated beta-catenin to the nucleus. J Cell Biochem 113:49–60

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  19. 19.

    Ray PD, Huang B-W, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  20. 20.

    Zhang T, Li Y, Park KA, Byun HS, Won M, Jeon J, Lee Y, Seok JH, Choi S-W, Lee S-H (2012) Cucurbitacin induces autophagy through mitochondrial ROS production which counteracts to limit caspase-dependent apoptosis. Autophagy 8:559–576

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Yasuda S, Yogosawa S, Izutani Y, Nakamura Y, Watanabe H, Sakai T (2010) Cucurbitacin B induces G2 arrest and apoptosis via a reactive oxygen species-dependent mechanism in human colon adenocarcinoma SW480 cells. Mol Nutr Food Res 54:559–565

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Filomeni G, De Zio D, Cecconi F (2014) Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 22:377–388

    PubMed Central  Article  PubMed  Google Scholar 

  23. 23.

    Guo J, Wu G, Bao J, Hao W, Lu J, Chen X (2014) Cucurbitacin B induced ATM-mediated DNA damage causes G2/M cell cycle arrest in a ROS-dependent manner. PLoS One 9:e88140

    PubMed Central  Article  PubMed  Google Scholar 

  24. 24.

    Guo J, Zhao W, Hao W, Ren G, Lu J, Chen X (2014) Cucurbitacin B induces DNA damage, G2/M phase arrest, and apoptosis mediated by reactive oxygen species (ROS) in leukemia K562 cells. Anticancer Agents Med Chem 14:1146–1153

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Munafo DB, Colombo MI (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 114:3619–3629

    CAS  PubMed  Google Scholar 

  26. 26.

    Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481:287–294

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Garcia-Canton C, Anadon A, Meredith C (2012) gammaH2AX as a novel endpoint to detect DNA damage: applications for the assessment of the in vitro genotoxicity of cigarette smoke. Toxicol In Vitro 26:1075–1086

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Mah LJ, El-Osta A, Karagiannis TC (2010) gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24:679–686

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Maréchal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5(9)

  30. 30.

    Smith J, Tho LM, Xu N, Gillespie DA (2010) The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108:73–112

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Nagelkerke A, Bussink J, Geurts-Moespot A, Sweep FC, Span PN (2014) Therapeutic targeting of autophagy in cancer. Part II: pharmacological modulation of treatment-induced autophagy. Semin Cancer Biol 31:99–105

    Article  PubMed  Google Scholar 

  32. 32.

    Thorburn A, Thamm DH, Gustafson DL (2014) Autophagy and cancer therapy. Mol Pharmacol 85:830–838

    PubMed Central  Article  PubMed  Google Scholar 

  33. 33.

    Zhang T, Li Y, Park KA, Byun HS, Won M, Jeon J, Lee Y, Seok JH, Choi SW, Lee SH, Man Kim J, Lee JH, Son CG, Lee ZW, Shen HM, Hur GM (2012) Cucurbitacin induces autophagy through mitochondrial ROS production which counteracts to limit caspase-dependent apoptosis. Autophagy 8:559–576

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    He J, Wang Y, Xu LH, Qiao J, Ouyang DY, He XH (2013) Cucurbitacin IIa induces caspase-3-dependent apoptosis and enhances autophagy in lipopolysaccharide-stimulated RAW 264.7 macrophages. Int Immunopharmacol 16:27–34

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Zhu JS, Ouyang DY, Shi ZJ, Xu LH, Zhang YT, He XH (2012) Cucurbitacin B induces cell cycle arrest, apoptosis and autophagy associated with G actin reduction and persistent activation of cofilin in Jurkat cells. Pharmacology 89:348–356

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Yuan G, Yan SF, Xue H, Zhang P, Sun JT, Li G (2014) Cucurbitacin I induces protective autophagy in glioblastoma in vitro and in vivo. J Biol Chem 289:10607–10619

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  37. 37.

    Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  38. 38.

    Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  39. 39.

    Vázquez CL, Colombo MI. (2009) Chapter 6 assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ‐BSA. In: Daniel JK (ed) Methods in enzymology. Academic Press, pp 85–95

  40. 40.

    Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11:709–730

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  41. 41.

    Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  42. 42.

    Myeku N, Figueiredo-Pereira ME (2011) Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62. J Biol Chem 286:22426–22440

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  43. 43.

    Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17:422–427

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Azad MB, Chen Y, Gibson SB (2009) Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 11:777–790

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Kurz EU, Lees-Miller SP (2004) DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair 3:889–900

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Yasuda S, Yogosawa S, Izutani Y, Nakamura Y, Watanabe H, Sakai T (2010) Cucurbitacin B induces G2 arrest and apoptosis via a reactive oxygen species-dependent mechanism in human colon adenocarcinoma SW480 cells. Mol Nutr Food Res 54:559–565

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Science and Technology Development Fund, Macao S.A.R. (FDCT) (No. 039/2014/A1) and the Research Fund of the University of Macau (No. MYRG118(Y2-L4)-ICMS13-CXP).

Conflict of interest

The authors declare that there are no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiuping Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, G., Sha, T., Guo, J. et al. Cucurbitacin B induces DNA damage and autophagy mediated by reactive oxygen species (ROS) in MCF-7 breast cancer cells. J Nat Med 69, 522–530 (2015). https://doi.org/10.1007/s11418-015-0918-4

Download citation

Keywords

  • Cucurbitacin B
  • ROS
  • DNA damage
  • Autophagy
  • Breast cancer