Skip to main content
Log in

Determination of anti-cancer effects of Nigella sativa seed oil on MCF7 breast and AGS gastric cancer cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

This study aimed to investigate the cytotoxic, apoptotic, invasion, metastasis, and heat shock proteins (HSPs) effects of N. sativa oil on breast and gastric cancer cells.

Methods

We assessed the cytotoxic and apoptotic effects of various concentrations of N. sativa oil (10-50-100-200 µg/mL) on MCF7 breast cancer and AGS, an adenocarcinoma of the gastric cell line, at 24, 48 and 72 h using the MTT test. Additionally, the expression of the Caspase-3, BCL2/Bax, MMP2-9 and HSP60-70 gene was examined using RT-PCR in cell lines treating with N. sativa.

Results

The MTT experiments demonstrate that N. sativa has a time and dose-dependent inhibitory effect on the proliferation of MCF7 and AGS cancer cells. The vitality rates of MCF7 and AGS cells treated with N. sativa were 77.04–67.50% at 24 h, 65.28–39.14% at 48 h, and 48.95–32.31% at 72 h. The doses of 100 and 200 µg/mL were shown to be the most effective on both cancer cells. RT-PCR analysis revealed that N. sativa oil extract increased caspase-3 levels in both cell lines at higher concentrations and suppressed BCL2/Bax levels. Exposure of MCF7 and AGS cell lines to N. sativa caused a significant decrease in the expression of MMP2-9 and HSP60-70 genes over time, particularly at a dosage of 200 µg/mL compared to the control group (p < 0.05).

Conclusions

Our findings indicate that N. sativa oil has a dose-dependent effect on cytotoxicity and the expression of apoptotic, heat shock proteins, and matrix metalloproteinases genes in breast and gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Woo CC, Hsu A, Kumar AP et al (2013) Thymoquinone inhibits Tumor Growth and induces apoptosis in a breast Cancer Xenograft Mouse Model: the role of p38 MAPK and ROS. PLoS ONE 8:e75356. https://doi.org/10.1371/journal.pone.0075356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aftab A, Yousaf Z, Rashid M et al (2023) Vegetative part of Nigella sativa L. potential antineoplastic sources against Hep2 and MCF7 human cancer cell lines. J Taibah Univ Sci 17. https://doi.org/10.1080/16583655.2022.2161294

  3. McGrowder DA, Miller FG, Nwokocha CR et al (2020) Medicinal herbs used in traditional management of breast Cancer. Mech Action Med 7:47. https://doi.org/10.3390/medicines7080047

    Article  CAS  Google Scholar 

  4. Ali BH, Blunden G, Tanira MO, Nemmar A (2008) Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 46:409–420. https://doi.org/10.1016/j.fct.2007.09.085

    Article  CAS  PubMed  Google Scholar 

  5. Sharma AN, Dewangan HK, Upadhyay PK (2024) Comprehensive Review on Herbal Medicine: emphasis on current therapy and role of phytoconstituents for Cancer Treatment. Chem Biodivers. https://doi.org/10.1002/cbdv.202301468

    Article  PubMed  Google Scholar 

  6. Khan H (2014) Medicinal plants in light of history: recognized therapeutic modality. J Evid Based Complement Altern Med 19:216–219. https://doi.org/10.1177/2156587214533346

    Article  Google Scholar 

  7. Cragg GM, Newman DJ, Snader KM (1997) Natural products in Drug Discovery and Development. J Nat Prod 60:52–60. https://doi.org/10.1021/np9604893

    Article  CAS  PubMed  Google Scholar 

  8. Kumar A, Jaitak V (2019) Natural products as multidrug resistance modulators in cancer. Eur J Med Chem 176:268–291. https://doi.org/10.1016/j.ejmech.2019.05.027

    Article  CAS  PubMed  Google Scholar 

  9. Chen J-F, Wu S-W, Shi Z-M, Hu B (2023) Traditional Chinese medicine for colorectal cancer treatment: potential targets and mechanisms of action. Chin Med 18:14. https://doi.org/10.1186/s13020-023-00719-7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nguyen C, Baskaran K, Pupulin A et al (2019) Hibiscus flower extract selectively induces apoptosis in breast cancer cells and positively interacts with common chemotherapeutics. BMC Complement Altern Med 19:98. https://doi.org/10.1186/s12906-019-2505-9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sardana RK, Chhikara N, Tanwar B, Panghal A (2018) Dietary impact on esophageal cancer in humans: a review. Food Funct 9:1967–1977. https://doi.org/10.1039/C7FO01908D

    Article  CAS  PubMed  Google Scholar 

  12. Cragg GM, Pezzuto JM (2016) Natural products as a vital source for the Discovery of Cancer Chemotherapeutic and Chemopreventive agents. Med Princ Pract 25:41–59. https://doi.org/10.1159/000443404

    Article  PubMed  Google Scholar 

  13. Yimer EM, Tuem KB, Karim A et al (2019) Nigella sativa L. (Black Cumin): a promising natural remedy for wide range of illnesses. Evidence-Based Complement Altern Med 2019:1–16. https://doi.org/10.1155/2019/1528635

    Article  Google Scholar 

  14. Ansary J, Giampieri F, Forbes-Hernandez TY et al (2021) Nutritional value and preventive role of Nigella sativa L. and its Main Component Thymoquinone in Cancer: an evidenced-based review of preclinical and clinical studies. Molecules 26:2108. https://doi.org/10.3390/molecules26082108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krishnan V , Bupesh G, Manikandan E, Thanigai Arul K, Magesh S , Kalyanaraman R and Maaza M (2016) Green Synthesis of Silver Nanoparticles Using Piper nigrum Concoction and its anticancer activity against MCF-7 and Hep-2 cell lines. J Antimicrob Agents 2:. https://doi.org/10.4172/2472-1212.1000123

  16. Das S, Ghosh A, Upadhyay P et al (2023) A mechanistic insight into the potential anti-cancerous property of Nigella sativa on breast cancer through micro-RNA regulation: an in vitro & in vivo study. Fitoterapia 169:105601. https://doi.org/10.1016/j.fitote.2023.105601

    Article  CAS  PubMed  Google Scholar 

  17. Ali BH, Blunden G (2003) Pharmacological and toxicological properties of Nigella sativa. Phyther Res 17:299–305. https://doi.org/10.1002/ptr.1309

    Article  CAS  Google Scholar 

  18. Khan A, Chen H-C, Tania M, Zhang D-Z (2011) Anticancer activities of Nigella sativa (Black Cumin). Afr J Tradit Complement Altern Med. https://doi.org/10.4314/ajtcam.v8i5S.10. 8:

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wilson-Simpson F, Vance S, Benghuzzi H (2007) Physiological responses of ES-2 ovarian cell line following administration of epigallocatechin-3-gallate (EGCG), thymoquinone (TQ), and selenium (SE). Biomed Sci Instrum 43:378–383

    CAS  PubMed  Google Scholar 

  20. Cui N, Hu M, Khalil RA (2017) Biochemical and Biological Attributes of Matrix Metalloproteinases. pp 1–73

  21. Nguyen YT, Kim N, Lee HJ (2023) Metal Complexes as Promising Matrix metalloproteinases regulators. Int J Mol Sci 24:1258. https://doi.org/10.3390/ijms24021258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vo HVT, Nguyen YT, Kim N, Lee HJ (2023) Vitamin A, D, E, and K as Matrix Metalloproteinase-2/9 regulators that affect expression and enzymatic activity. Int J Mol Sci 24:17038. https://doi.org/10.3390/ijms242317038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li Y-Y, Zhang L-Y, Xiang Y-H et al (2023) Matrix metalloproteinases and tissue inhibitors in multiple myeloma: promote or inhibit? Front Oncol 13. https://doi.org/10.3389/fonc.2023.1127407

  24. Choi EK, Kim HD, Park EJ et al (2023) 8-Methoxypsoralen induces apoptosis by upregulating p53 and inhibits metastasis by downregulating MMP-2 and MMP-9 in human gastric Cancer cells. Biomol Ther (Seoul) 31:219–226. https://doi.org/10.4062/biomolther.2023.004

    Article  CAS  PubMed  Google Scholar 

  25. Kumar P, Sebastian A, Verma K et al (2021) mRNA expression analysis of E-Cadherin, VEGF, and MMPs in gastric Cancer: a pilot study. Indian J Surg Oncol 12:85–92. https://doi.org/10.1007/s13193-020-01096-5

    Article  PubMed  Google Scholar 

  26. Yadav L, Puri N, Rastogi V et al (2014) Matrix metalloproteinases and Cancer - roles in threat and therapy. Asian Pac J Cancer Prev 15:1085–1091. https://doi.org/10.7314/APJCP.2014.15.3.1085

    Article  PubMed  Google Scholar 

  27. Jiang L, Yu G, Meng W et al (2013) Overexpression of amyloid precursor protein in acute myeloid leukemia enhances extramedullary infiltration by MMP-2. Tumor Biol 34:629–636. https://doi.org/10.1007/s13277-012-0589-7

    Article  CAS  Google Scholar 

  28. Rocca G, La, Pucci-Minafra I, Marrazzo A et al (2004) Zymographic detection and clinical correlations of MMP-2 and MMP-9 in breast cancer sera. Br J Cancer 90:1414–1421. https://doi.org/10.1038/sj.bjc.6601725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kamalabadi Farahani M, Atashi A, Bitaraf FS (2023) Upregulation of Matrix metalloproteinases in the Metastatic Cascade of breast Cancer to the brain. Asian Pac J Cancer Prev 24:2997–3001. https://doi.org/10.31557/APJCP.2023.24.9.2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saini J, Sharma PK (2018) Clinical, prognostic and therapeutic significance of heat shock proteins in Cancer. Curr Drug Targets 19:1478–1490. https://doi.org/10.2174/1389450118666170823121248

    Article  CAS  PubMed  Google Scholar 

  31. Yildiz MT, Tutar L, Giritlioğlu NI et al (2022) MicroRNAs and heat shock proteins in breast Cancer Biology. pp 293–310

  32. Calderwood SK (2010) Heat shock proteins in breast cancer progression–A suitable case for treatment? Int J Hyperth 26:681–685. https://doi.org/10.3109/02656736.2010.490254

    Article  CAS  Google Scholar 

  33. Desmetz C, Bibeau F, Boissière F et al (2008) Proteomics-based identification of HSP60 as a Tumor-Associated Antigen in early stage breast Cancer and Ductal Carcinoma in situ. J Proteome Res 7:3830–3837. https://doi.org/10.1021/pr800130d

    Article  CAS  PubMed  Google Scholar 

  34. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366. https://doi.org/10.1016/S0092-8674(00)80928-9

    Article  CAS  PubMed  Google Scholar 

  35. Konturek PC, Kania J, Kukharsky V et al (2003) Influence of gastrin on the expression of cyclooxygenase-2, hepatocyte growth factor and apoptosis-related proteins in gastric epithelial cells. J Physiol Pharmacol 54:17–32

    CAS  PubMed  Google Scholar 

  36. Ergul M, Aktan F, Yildiz MT, Tutar Y (2020) Perturbation of HSP Network in MCF-7 breast Cancer cell line triggers inducible HSP70 expression and leads to tumor suppression. Anticancer Agents Med Chem 20:1051–1060. https://doi.org/10.2174/1871520620666200213102210

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Xu Q, Fu X, Luo W (2014) Heat shock protein 60 overexpression is Associated with the progression and prognosis in gastric Cancer. PLoS ONE 9:e107507. https://doi.org/10.1371/journal.pone.0107507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tong W-W, Tong G-H, Kong H, Liu Y (2016) The tumor promoting roles of HSP60 and HIF2α in gastric cancer cells. Tumor Biol 37:9849–9854. https://doi.org/10.1007/s13277-015-4783-2

    Article  CAS  Google Scholar 

  39. Liu W, Chen Y, Lu G et al (2011) Down-regulation of HSP70 sensitizes gastric epithelial cells to apoptosis and growth retardation triggered by H. Pylori. BMC Gastroenterol 11:146. https://doi.org/10.1186/1471-230X-11-146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mazaheri Y, Torbati M, Azadmard-Damirchi S (2021) Effect of Processing on the Composition and Quality of Nigella sativa Fixed Oil. pp 335–347

  41. Mousavi SH, Tayarani-Najaran Z, Asghari M, Sadeghnia HR (2010) Protective effect of Nigella sativa Extract and Thymoquinone on Serum/Glucose Deprivation-Induced PC12 cells death. Cell Mol Neurobiol 30:591–598. https://doi.org/10.1007/s10571-009-9484-1

    Article  CAS  PubMed  Google Scholar 

  42. Cinar I, Yayla M, Tavaci T et al (2022) In vivo and in Vitro Cardioprotective Effect of Gossypin Against Isoproterenol-Induced Myocardial Infarction Injury. Cardiovasc Toxicol 22:52–62. https://doi.org/10.1007/s12012-021-09698-3

    Article  CAS  PubMed  Google Scholar 

  43. Cinar I (2021) Apoptosis-inducing activity and Antiproliferative Effect of Gossypin on PC-3 prostate Cancer cells. Anticancer Agents Med Chem 21:445–450. https://doi.org/10.2174/1871520620666200721103422

    Article  CAS  PubMed  Google Scholar 

  44. Cinar I, Halici Z, Dincer B et al (2020) The role of 5-HT7 receptors on isoproterenol-induced myocardial infarction in rats with high-fat diet exacerbated coronary endothelial dysfunction. Hum Exp Toxicol 39:1005–1018. https://doi.org/10.1177/0960327120916821

    Article  CAS  PubMed  Google Scholar 

  45. Ma X, Yu H (2006) Global burden of cancer. Yale J Biol Med 79:85–94

    PubMed  Google Scholar 

  46. Ahmad A, Husain A, Mujeeb M et al (2013) A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pac J Trop Biomed 3:337–352. https://doi.org/10.1016/S2221-1691(13)60075-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hosseinzadeh H, Mollazadeh H, Afshari AR (2017) Review on the potential therapeutic roles of Nigella sativa in the treatment of patients with Cancer: involvement of apoptosis. J Pharmacopunct 20:158–172. https://doi.org/10.3831/KPI.2017.20.019

    Article  Google Scholar 

  48. Baig WA, Alwosaibai K, Al-Jubran KM et al (2022) Synergistic anti-cancer effects of Nigella sativa seed oil and conventional cytotoxic agent against human breast cancer. Drug Metab Pers Ther 37:315–321. https://doi.org/10.1515/dmpt-2021-0229

    Article  CAS  PubMed  Google Scholar 

  49. Alhazmi MI, Hasan TN, Shafi G et al (2014) Roles of p53 and caspases in induction of apoptosis in MCF-7 breast Cancer cells treated with a Methanolic Extract of Nigella Sativa Seeds. Asian Pac J Cancer Prev 15:9655–9660. https://doi.org/10.7314/APJCP.2014.15.22.9655

    Article  PubMed  Google Scholar 

  50. Farah I (2005) Assessment of Cellular responses to oxidative stress using MCF-7 breast Cancer cells, black seed (N. Sativa L.) extracts and H2O2. Int J Environ Res Public Health 2:411–419. https://doi.org/10.3390/ijerph2005030005

    Article  CAS  PubMed  Google Scholar 

  51. Mahmoud SS, Torchilin VP (2013) Hormetic/Cytotoxic effects of Nigella sativa seed alcoholic and aqueous extracts on MCF-7 breast Cancer cells alone or in combination with Doxorubicin. Cell Biochem Biophys 66:451–460. https://doi.org/10.1007/s12013-012-9493-4

    Article  CAS  PubMed  Google Scholar 

  52. Al-Oqail MM, Al-Sheddi ES, Al-Massarani SM et al (2017) Nigella sativa seed oil suppresses cell proliferation and induces ROS dependent mitochondrial apoptosis through p53 pathway in hepatocellular carcinoma cells. South Afr J Bot 112:70–78. https://doi.org/10.1016/j.sajb.2017.05.019

    Article  CAS  Google Scholar 

  53. Shakeri F, Gholamnezhad Z, Mégarbane B et al (2016) Gastrointestinal effects of Nigella sativa and its main constituent, thymoquinone: a review. Avicenna J Phytomedicine 6:9–20

    CAS  Google Scholar 

  54. Carmichael J, DeGraff WG, Gazdar AF et al (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of radiosensitivity. Cancer Res 47:943–946

    CAS  PubMed  Google Scholar 

  55. Keyvani V, Nasserifar Z, Saberi M-R et al (2020) Evaluation the interaction of ABC multidrug transporter MDR1 with thymoquinone: substrate or inhibitor? Iran J Basic Med Sci 23:1360–1366. https://doi.org/10.22038/ijbms.2020.44216.10381

    Article  PubMed  PubMed Central  Google Scholar 

  56. Czajkowska A, Gornowicz A, Pawłowska N et al (2017) Anticancer Effect of a Novel Octahydropyrazino[2,1-a:5,4-a′]diisoquinoline derivative and its synergistic action with Nigella sativa in human gastric Cancer cells. Biomed Res Int 2017:1–13. https://doi.org/10.1155/2017/9153403

    Article  CAS  Google Scholar 

  57. Salim EI, Fukushima S (2003) Chemopreventive Potential of Volatile Oil from Black Cumin (Nigella sativa L.) seeds against rat Colon carcinogenesis. Nutr Cancer 45:195–202. https://doi.org/10.1207/S15327914NC4502_09

    Article  PubMed  Google Scholar 

  58. Periasamy VS, Athinarayanan J, Alshatwi AA (2016) Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrason Sonochem 31:449–455. https://doi.org/10.1016/j.ultsonch.2016.01.035

    Article  CAS  PubMed  Google Scholar 

  59. Gholamnezhad Z, Boskabady MH, Hosseini M (2014) Effect of Nigella sativa on immune response in treadmill exercised rat. BMC Complement Altern Med 14:437. https://doi.org/10.1186/1472-6882-14-437

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fogg VC, Lanning NJ, MacKeigan JP (2011) Mitochondria in cancer: at the crossroads of life and death. Chin J Cancer 30:526–539. https://doi.org/10.5732/cjc.011.10018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in Cancer Therapy. Clin Cancer Res 15:1126–1132. https://doi.org/10.1158/1078-0432.CCR-08-0144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alsanosi S, Sheikh RA, Sonbul S et al (2022) The potential role of Nigella sativa seed oil as epigenetic therapy of Cancer. Molecules 27:2779. https://doi.org/10.3390/molecules27092779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thompson EW, Paik S, Brünner N et al (1992) Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150:534–544. https://doi.org/10.1002/jcp.1041500314

    Article  CAS  PubMed  Google Scholar 

  64. Lai J, Myers SA, Lawrence MG et al (2009) Direct progesterone receptor and indirect androgen receptor interactions with the Kallikrein-related peptidase 4 Gene Promoter in breast and prostate Cancer. Mol Cancer Res 7:129–141. https://doi.org/10.1158/1541-7786.MCR-08-0218

    Article  CAS  PubMed  Google Scholar 

  65. Pang Y, Thomas P (2011) Progesterone signals through membrane progesterone receptors (mPRs) in MDA-MB-468 and mPR-transfected MDA-MB-231 breast cancer cells which lack full-length and N-terminally truncated isoforms of the nuclear progesterone receptor. https://doi.org/10.1016/j.steroids.2011.01.008. Steroids

  66. Huovinen M, Loikkanen J, Myllynen P, Vähäkangas KH (2011) Characterization of human breast cancer cell lines for the studies on p53 in chemical carcinogenesis. Toxicol Vitr 25:1007–1017. https://doi.org/10.1016/j.tiv.2011.03.018

    Article  CAS  Google Scholar 

  67. Seiler R, Thalmann GN, Fleischmann A (2011) MMP-2 and MMP-9 in lymph-node-positive bladder cancer. J Clin Pathol 64:1078–1082. https://doi.org/10.1136/jclinpath-2011-200153

    Article  PubMed  Google Scholar 

  68. Alaseem A, Alhazzani K, Dondapati P et al (2019) Matrix metalloproteinases: a challenging paradigm of cancer management. Semin Cancer Biol 56:100–115. https://doi.org/10.1016/j.semcancer.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  69. Dofora SG, Chang SL, Diorio C (2020) Gene polymorphisms and circulating levels of MMP-2 and MMP-9: a review of their role in breast Cancer risk. Anticancer Res 40:3619–3631. https://doi.org/10.21873/anticanres.14351

    Article  CAS  PubMed  Google Scholar 

  70. Ünal TD, Hamurcu Z, Delibaşı N et al (2021) Thymoquinone inhibits Proliferation and Migration of MDA-MB-231 triple negative breast Cancer cells by suppressing autophagy, Beclin-1 and LC3. Anticancer Agents Med Chem 21:355–364. https://doi.org/10.2174/1871520620666200807221047

    Article  CAS  PubMed  Google Scholar 

  71. Arumugam P, Subramanian R, Priyadharsini JV, Gopalswamy J (2016) Thymoquinone inhibits the migration of mouse neuroblastoma (Neuro-2a) cells by down-regulating MMP-2 and MMP-9. Chin J Nat Med 14:904–912. https://doi.org/10.1016/S1875-5364(17)30015-8

    Article  PubMed  Google Scholar 

  72. Kolli-Bouhafs K, Boukhari A, Abusnina A et al (2012) Thymoquinone reduces migration and invasion of human glioblastoma cells associated with FAK, MMP-2 and MMP-9 down-regulation. Invest New Drugs 30:2121–2131. https://doi.org/10.1007/s10637-011-9777-3

    Article  CAS  PubMed  Google Scholar 

  73. Yang J, Kuang X, Lv P, Yan X (2015) Thymoquinone inhibits proliferation and invasion of human nonsmall-cell lung cancer cells via ERK pathway. Tumor Biol 36:259–269. https://doi.org/10.1007/s13277-014-2628-z

    Article  CAS  Google Scholar 

  74. Elgohary S, Elkhodiry AA, Amin NS et al (2021) Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected. Cancer Patients? Cells 10:302. https://doi.org/10.3390/cells10020302

    Article  CAS  PubMed  Google Scholar 

  75. Abdelwahab SI, Taha, Sheikh et al (2013) Thymoquinone-loaded nanostructured lipid carriers: preparation, gastroprotection, in vitro toxicity, and pharmacokinetic properties after extravascular administration. Int J Nanomed 2163. https://doi.org/10.2147/IJN.S44108

  76. Taha MME, Sheikh BY, Salim LZA et al (2016) Thymoquinone induces apoptosis and increase ROS in ovarian cancer cell line. Cell Mol Biol (Noisy-le-grand) 62:97–101

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept/Design: IC, BG, ED; Data acquisition: IC, BG, ED; Data analysis and interpretation: IC, BG, ED; Drafting manuscript: IC, BG, ED; Critical revision of manuscript: IC, BG, ED; Final approval and accountability: IC, BG, ED; Technical or material support: IC, BG, ED; Supervision: IC, ED; Securing funding (if available): n/a.

Corresponding author

Correspondence to Ebubekir Dirican.

Ethics declarations

Ethical approval

Since the cell line was used in our study, the Ethics Committee approval was not required.

Peer-review

Externally peer-reviewed.

Conflict of interest

Authors declared no conflict of interest.

Financial disclosure

Authors declared no financial support.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çınar, İ., Gıdık, B. & Dirican, E. Determination of anti-cancer effects of Nigella sativa seed oil on MCF7 breast and AGS gastric cancer cells. Mol Biol Rep 51, 491 (2024). https://doi.org/10.1007/s11033-024-09453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09453-1

Keywords

Navigation