Skip to main content
Log in

Recent Progress in Applications of the Conditional Nonlinear Optimal Perturbation Approach to Atmosphere-Ocean Sciences

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The conditional nonlinear optimal perturbation (CNOP for short) approach is a powerful tool for predictability and targeted observation studies in atmosphere-ocean sciences. By fully considering nonlinearity under appropriate physical constraints, the CNOP approach can reveal the optimal perturbations of initial conditions, boundary conditions, model parameters, and model tendencies that cause the largest simulation or prediction uncertainties. This paper reviews the progress of applying the CNOP approach to atmosphere-ocean sciences during the past five years. Following an introduction of the CNOP approach, the algorithm developments for solving the CNOP are discussed. Then, recent CNOP applications, including predictability studies of some high-impact ocean-atmospheric environmental events, ensemble forecast, parameter sensitivity analysis, uncertainty estimation caused by errors of model tendency or boundary condition, are reviewed. Finally, a summary and discussion on future applications and challenges of the CNOP approach are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chemin J. Y., Desjardins B., Gallagher I. and Grenier E., An introduction to rotating fluids and the Navier-Stokes equations, Mathematical Geophysics, 32, The Clarendon Press, Oxford University Press, Oxford, 2006.

    Chapter  MATH  Google Scholar 

  2. Salama, A., Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, 2nd ed., B. Cushman-Roisin and J.-M. Beckers, Academic Press, 2013.

  3. Charney, J. G., FjÖrtoft, R. and Neumann, J. Von, Numerical integration of the barotropic vorticity equation, Tellus, 2, 1950, 237–254.

    Article  Google Scholar 

  4. Bryan, K., A numerical method for the study of the circulation of the world ocean, J. Comput. Phys., 4, 1969, 347–376.

    Article  MATH  Google Scholar 

  5. Randall, D. A., Bitz, C. M., Danabasoglu, G., et al., 100 years of earth system model development, Meteorol. Monogr., 59, 2019, 12.1–12.66.

    Article  Google Scholar 

  6. Palmer, T. N., Shutts, G. J., Hagedorn, R., et al., Representing model uncertainty in weather and climate prediction, Annu. Rev. Earth Planet. Sci., 33, 2005, 163–193.

    Article  MATH  Google Scholar 

  7. Slingo, J. and Palmer, T., Uncertainty in weather and climate prediction, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 369, 2011, 4751–4767.

    Article  MATH  Google Scholar 

  8. Mu, M., Duan, W. and Tang, Y. M., The predictability of atmospheric and oceanic motions: Retrospect and prospects, Sci. China Earth Sci., 60, 2017, 2001–2012.

    Article  Google Scholar 

  9. Mu, M., Duan, W. and Chou, J., Recent advances in predictability studies in China (1999–2002), Adv. Atmos. Sci., 21, 2004, 437–443.

    Article  Google Scholar 

  10. Latif, M., Collins, M., Pohlmann, H. and Keenlyside, N., A review of predictability studies of Atlantic sector climate on decadal time scales, J. Clim., 19, 2006, 5971–5987.

    Article  Google Scholar 

  11. Tang, Y., Zhang, R., Liu, T., et al., Progress in ENSO prediction and predictability study, Natl. Sci. Rev., 5, 2018, 826–839.

    Article  Google Scholar 

  12. Mu, M. and Wang, Q., Applications of nonlinear optimization approach to atmospheric and oceanic sciences, Sci. Sin. Math., 47, 2017, 1207–1222.

    Article  MATH  Google Scholar 

  13. Thompson, P. D., Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns, Tellus, 9, 1957, 275–295.

    Article  Google Scholar 

  14. Boer, G. J., A study of atmosphere-ocean predictability on long time scales, Clim. Dyn., 16, 2000, 469–477.

    Article  Google Scholar 

  15. Schneider, T. and Griffies, S. M., A conceptual framework for predictability studies, J. Clim., 12, 1999, 3133–3155.

    Article  Google Scholar 

  16. Palmer, T. N., Gelaro, R., Barkmeijer, J. and Buizza, R., Singular vectors, metrics, and adaptive observations, J. Atmos. Sci., 55, 1998, 633–653.

    Article  Google Scholar 

  17. Palmer, T. N. and Zanna, L., Singular vectors, predictability and ensemble forecasting for weather and climate, J. Phys. A Math. Theor., 46, 2013, 254018.

    Article  MATH  Google Scholar 

  18. Lorenz, E. N., A study of the predictability of a 28-variable atmospheric model, Tellus, 17, 1965, 321–333.

    Article  Google Scholar 

  19. Farrell, B. F., Small error dynamics and the predictability of atmospheric flows, J. Atmos. Sci., 47, 1990, 2409–2416.

    Article  Google Scholar 

  20. Fujii, Y., Tsujino, H., Usui, N., et al., Application of singular vector analysis to the Kuroshio large meander, J. Geophys. Res. Ocean., 113, 2008.

  21. Zanna, L., Heimbach, P., Moore, A. M. and Tziperman, E., Upper-ocean singular vectors of the North Atlantic climate with implications for linear predictability and variability, Q. J. R. Meteorol. Soc., 138, 2012, 500–513.

    Article  Google Scholar 

  22. Wang, Q., Mu, M. and Dijkstra, H. A., Effects of nonlinear physical processes on optimal error growth in predictability experiments of the Kuroshio Large Meander, J. Geophys. Res. Ocean., 118, 2013, 6425–6436.

    Article  Google Scholar 

  23. Geng, Y., Wang, Q., Mu, M. and Zhang, K., Predictability and error growth dynamics of the Kuroshio Extension state transition process in an eddy-resolving regional ocean model, Ocean Model., 153, 2020, 101659.

    Article  Google Scholar 

  24. Mu, M., Duan, W. and Wang, B., Conditional nonlinear optimal perturbation and its applications, Nonlinear Process. Geophys., 10, 2003, 493–501.

    Article  Google Scholar 

  25. Cherubini, S., De Palma, P., Robinet, J. C. and Bottaro, A., Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow, Phys. Rev. E — Stat. Nonlinear, Soft Matter Phys., 82, 2010, 66302.

    Article  Google Scholar 

  26. Pringle, C. C. T. and Kerswell, R. R., Using nonlinear transient growth to construct the minimal seed for shear flow turbulence, Phys. Rev. Lett., 105, 2010, 154502.

    Article  Google Scholar 

  27. Mu, M., Duan, W., Chen, D. and Yu, W., Target observations for improving initialization of high-impact ocean-atmospheric environmental events forecasting, Natl. Sci. Rev., 2, 2015, 226–236.

    Article  Google Scholar 

  28. Mu, M., Methods, current status, and prospect of targeted observation, Sci. China Earth Sci., 56, 2013, 1997–2005.

    Article  Google Scholar 

  29. Mu, M., Duan, W., Wang, Q. and Zhang, R., An extension of conditional nonlinear optimal perturbation approach and its applications, Nonlinear Process. Geophys., 17, 2010, 211–220.

    Article  Google Scholar 

  30. Duan, W. and Zhou, F., Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model, Tellus, Ser. A Dyn. Meteorol. Oceanogr., 65, 2013, 18452.

    Article  Google Scholar 

  31. Wang, Q. and Mu, M., A new application of conditional nonlinear optimal perturbation approach to boundary condition uncertainty, J. Geophys. Res. Ocean., 120, 2015, 7979–7996.

    Article  Google Scholar 

  32. Mu, M., Sun, L. and Dijkstra, H. A., The sensitivity and stability of the oceans thermohaline circulation to finite-amplitude perturbations, J. Phys. Oceanogr., 34, 2004, 2305–2315.

    Article  Google Scholar 

  33. Zu, Z., Mu, M. and Dijkstra, H. A., Optimal initial excitations of decadal modification of the Atlantic meridional overturning circulation under the prescribed heat and freshwater flux boundary conditions, J. Phys. Oceanogr., 46, 2016, 2029–2047.

    Article  Google Scholar 

  34. Duan, W., Liu, X., Zhu, K. and Mu, M., Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events, J. Geophys. Res. Ocean., 114, 2009, C04022.

    Article  Google Scholar 

  35. Duan, W. and Mu, M., Investigating decadal variability of El Nino-Southern Oscillation asymmetry by conditional nonlinear optimal perturbation, J. Geophys. Res. Ocean., 111(C7), 2006, C07015.

    Article  Google Scholar 

  36. Mu, M., Yu, Y., Xu, H. and Gong, T., Similarities between optimal precursors for ENSO events and optimally growing initial errors in El Niño predictions, Theor. Appl. Climatol., 115, 2014, 461–469.

    Article  Google Scholar 

  37. Hu, J. and Duan, W., Relationship between optimal precursory disturbances and optimally growing initial errors associated with ENSO events: Implications to target observations for ENSO prediction, J. Geophys. Res. Ocean., 121, 2016, 2901–2917.

    Article  Google Scholar 

  38. Mu, M., Xu, H. and Duan, W., A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model, Geophys. Res. Lett., 34, 2007, L03709.

    Article  Google Scholar 

  39. van Scheltinga, A. D. and Dijkstra, H. A., Conditional nonlinear optimal perturbations of the double-gyre ocean circulation, Nonlinear Process. Geophys., 15(5), 2008, 727–734.

    Article  Google Scholar 

  40. Mu, M. and Jiang, Z., A method to find perturbations that trigger blocking onset: Conditional nonlinear optimal perturbations, J. Atmos. Sci., 65, 2008, 3935–3946.

    Article  Google Scholar 

  41. Jiang, Z. and Wang, D., A study on precursors to blocking anomalies in climatological flows by using conditional nonlinear optimal perturbations, Q. J. R. Meteorol. Soc., 136, 2010, 1170–1180.

    Article  Google Scholar 

  42. Qin, X. and Mu, M., Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts, Q. J. R. Meteorol. Soc., 138, 2012, 185–197.

    Article  Google Scholar 

  43. Wang, Q., Mu, M. and Dijkstra, H. A., The similarity between optimal precursor and optimally growing initial error in prediction of Kuroshio large meander and its application to targeted observation, J. Geophys. Res. Ocean., 118, 2013, 869–884.

    Article  Google Scholar 

  44. Zhang, K., Wang, Q., Mu, M. and Liang, P., Effects of optimal initial errors on predicting the seasonal reduction of the upstream Kuroshio transport, Deep. Res. Part I Oceanogr. Res. Pap., 116, 2016, 220–235.

    Article  Google Scholar 

  45. Qin, X. and Mu, M., A study on the reduction of forecast error variance by three adaptive observation approaches for tropical cyclone prediction, Mon. Weather Rev., 139, 2011, 2218–2232.

    Article  Google Scholar 

  46. Mu, M., Zhou, F. and Wang, H., A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: Conditional nonlinear optimal perturbation, Mon. Weather Rev., 137, 2009, 1623–1639.

    Article  Google Scholar 

  47. Zhang, K., Mu, M. and Wang, Q., Identifying the sensitive area in adaptive observation for predicting the upstream Kuroshio transport variation in a 3-D ocean model, Sci. China Earth Sci., 60, 2017, 866–875.

    Article  Google Scholar 

  48. Mu, M. and Jiang, Z., A new approach to the generation of initial perturbations for ensemble prediction: Conditional nonlinear optimal perturbation, Chinese Sci. Bull., 53, 2008, 2062–2068.

    Google Scholar 

  49. Jiang, Z. and Mu, M., A comparison study of the methods of conditional nonlinear optimal perturbations and singular vectors in ensemble prediction, Adv. Atmos. Sci., 26, 2009, 465–470.

    Article  Google Scholar 

  50. Huo, Z., Duan, W. and Zhou, F., Ensemble forecasts of tropical cyclone track with orthogonal conditional nonlinear optimal perturbations, Adv. Atmos. Sci., 36, 2019, 231–247.

    Article  Google Scholar 

  51. Sun, G. and Mu, M., Response of a grassland ecosystem to climate change in a theoretical model, Advances in Atmospheric Sciences, 28 (6), 1266–1278.

  52. Wang, B. and Huo, Z., Extended application of the conditional nonlinear optimal parameter perturbation method in the common land model, Adv. Atmos. Sci., 30, 2013, 1213–1223.

    Article  Google Scholar 

  53. Sun, G. and Mu, M., A flexible method to determine the sensitive physical parameter combination for soil carbon under five plant types, Ecosphere, 8, 2017, e01920.

    Article  Google Scholar 

  54. Gao, Y., Mu, M. and Zhang, K., Impacts of parameter uncertainties on deep chlorophyll maximum simulation revealed by the CNOP-P approach, J. Oceanol. Limnol., 38, 2020, 1382–1393.

    Article  Google Scholar 

  55. Duan, W. and Zhao, P., Revealing the most disturbing tendency error of Zebiak-Cane model associated with El Ninño predictions by nonlinear forcing singular vector approach, Clim. Dyn., 44, 2015, 2351–2367.

    Article  Google Scholar 

  56. Mu, M. and Duan W., Applications of conditional nonlinear optimal perturbation to the studies of predictability problems, Chinese Journal of Atmospheric Sciences, 37(2), 2013, 281–296 (in Chinese).

    Google Scholar 

  57. Wang, Q., Mu, M. and Sun, G., A useful approach to sensitivity and predictability studies in geophysical fluid dynamics: Conditional non-linear optimal perturbation, Natl. Sci. Rev., 7, 2020, 214–223.

    Article  Google Scholar 

  58. Mu, B., Ren, J. and Yuan, S., An efficient approach based on the gradient definition for solving conditional nonlinear optimal perturbation, Math. Probl. Eng., PT.11, 2017, 3208431.1–3208431.10.

    Google Scholar 

  59. Wang, B. and Tan, X., A fast algorithm for solving CNOP and associated target observation tests, Acta Meteorologica Sinica, 23, 2009, 387–402.

    Google Scholar 

  60. Wang, B. and Tan, X., Conditional nonlinear optimal perturbations: Adjoint-free calculation method and preliminary test, Mon. Weather Rev., 138, 2010, 1043–1049.

    Article  Google Scholar 

  61. Zheng, Q., Dai, Y., Zhang, L., et al., On the application of a genetic algorithm to the predictability problems involving “On-Off” switches, Adv. Atmos. Sci., 29, 2012, 422–434.

    Article  Google Scholar 

  62. Sun, G. and Mu, M., Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model, Clim. Change, 120, 2013, 755–769.

    Article  Google Scholar 

  63. Chen, L., Duan, W. and Xu, H., A SVD-based ensemble projection algorithm for calculating the conditional nonlinear optimal perturbation, Sci. China Earth Sci., 58, 2015, 385–394.

    Article  Google Scholar 

  64. Yuan, S., Li, M., Wang, Q., et al., Optimal precursors of double-gyre regime transitions with an adjoint-free method, J. Oceanol. Limnol., 37, 2019, 1137–1153.

    Article  Google Scholar 

  65. Mu, B., Ren, J., Yuan, S. and Zhou, F., Identifying typhoon targeted observations sensitive areas using the gradient definition based method, Asia-Pacific J. Atmos. Sci., 55, 2019, 195–207.

    Article  Google Scholar 

  66. Mu, B., Ren, J., Yuan, S. et al., The optimal precursors for ENSO events depicted using the gradient-definition-based method in an intermediate coupled model, Adv. Atmos. Sci., 36, 2019, 1381–1392.

    Article  Google Scholar 

  67. Ma, X., Mu, M., Dai, G., et al., Influence of arctic sea ice concentration on extended-range prediction of strong and long-lasting ural blocking events in winter, J. Geophys. Res. Atmo., 127, 2022, e20215D036282.

    Google Scholar 

  68. Yang, Z., Fang, X. and Mu, M., The optimal precursor of El Niño in the GFDL CM2p1 model, J. Geophys. Res. Ocean., 125, 2020, e2019JC015797.

    Article  Google Scholar 

  69. Zhang, K., Mu, M., Wang, Q., et al., CNOP-based adaptive observation network designed for improving upstream kuroshio transport prediction, J. Geophys. Res. Ocean., 124, 2019, 4350–4364.

    Article  Google Scholar 

  70. Liang, P., Mu, M., Wang, Q. and Yang, L., Optimal precursors triggering the Kuroshio intrusion into the south china sea obtained by the conditional nonlinear optimal perturbation approach, J. Geophys. Res. Ocean., 34(6), 2017, 15.

    Google Scholar 

  71. Liu, X., Wang, Q. and Mu, M., Optimal initial error growth in the prediction of the kuroshio large meander based on a high-resolution regional ocean model, Adv. Atmos. Sci., 35, 2018, 1362–1371.

    Article  Google Scholar 

  72. Zhou, L., Wang, Q., Mu, M. and Zhang, K., Optimal precursors triggering sudden shifts in the antarctic circumpolar current transport through drake passage, J. Geophys. Res. Ocean., 126, 2021, e2021JC017899.

    Article  Google Scholar 

  73. Zhang, K., Mu, M. and Wang, Q., Increasingly important role of numerical modeling in oceanic observation design strategy: A review, Sci. China Earth Sci., 63, 2020, 1678–1690.

    Article  Google Scholar 

  74. Liu, K., Guo, W., Da, L., et al., Improving the thermal structure predictions in the Yellow Sea by conducting targeted observations in the CNOP-identified sensitive areas, Sci. Rep., 11, 2021, 1–14.

    Google Scholar 

  75. Xu, H., Chen, L. and Duan, W., Optimally growing initial errors of El Niño events in the CESM, Clim. Dyn., 56, 2021, 3797–3815.

    Article  Google Scholar 

  76. Zhou, Q., Chen, L., Duan, W., et al., Using conditional nonlinear optimal perturbation to generate initial perturbations in ENSO ensemble forecasts, Weather Forecast., 36, 2021, 2101–2111.

    Google Scholar 

  77. Zhou, Q., Duan, W. and Hu, J., Exploring sensitive area in the tropical indian ocean for El Ninño prediction: Implication for targeted observation, J. Oceanol. Limnol., 38, 2020, 1602–1615.

    Article  Google Scholar 

  78. Wei, Y., Mu, M., Ren, H. and Fu, J., Conditional nonlinear optimal perturbations of moisture triggering primary MJO initiation, Geophys. Res. Lett., 46, 2019, 3492–3501.

    Article  Google Scholar 

  79. Chen, G., Wang, B. and Liu, J., Study on the sensitivity of initial perturbations to the development of a vortex observed in southwest china, J. Geophys. Res. Atmos., 126, 2021, 1–19.

    Article  Google Scholar 

  80. Peng, F., Mu, M. and Sun, G., Evaluations of uncertainty and sensitivity in soil moisture modeling on the Tibetan Plateau, Tellus A Dyn. Meteorol. Oceanogr., 72, 2020, 1–16.

    Google Scholar 

  81. Sun, G. and Mu, M., Impacts of two types of errors on the predictability of terrestrial carbon cycle, Ecosphere, 12, 2021, e03315.

    Article  Google Scholar 

  82. Sun, G., Peng, F. and Mu, M., Application of targeted observation in a model’s physical parameters for the simulation and forecast of heat flux with a land surface model, Meteorol. Appl., 27, 2020, e1883.

    Article  Google Scholar 

  83. Wang, L., Shen, X., Liu, J. and Wang, B., Model uncertainty representation for a convection-allowing ensemble prediction system based on CNOP-P, Adv. Atmos. Sci., 37, 2020, 817–831.

    Article  Google Scholar 

  84. Duan, W., Zhao, P., Hu, J. and Xu, H., The role of nonlinear forcing singular vector tendency error in causing the spring predictability barrier for ENSO, J. Meteorol. Res., 30, 2016, 853–866.

    Article  Google Scholar 

  85. Tao, L. and Duan, W., Using a nonlinear forcing singular vector approach to reduce model error effects in ENSO forecasting, Weather Forecast., 34, 2019, 1321–1342.

    Article  Google Scholar 

  86. Tao, L., Duan, W. and Vannitsem, S., Improving forecasts of El Niño diversity: A nonlinear forcing singular vector approach, Clim. Dyn., 55, 2020, 739–754.

    Article  Google Scholar 

  87. Takaya, K. and Nakamura, H., Mechanisms of intraseasonal amplification of the cold Siberian high, J. Atmos. Sci., 62, 2005, 4423–4440.

    Article  Google Scholar 

  88. Ding, Y. and Krishnamurti, T. N., Heat budget of the siberian high and the winter monsoon, Mon. Weather Rev., 115, 1987, 2428–2449.

    Article  Google Scholar 

  89. Luo, D., Chen, X., Dai, A. and Simmonds, I., Changes in atmospheric blocking circulations linked with winter Arctic warming: A new perspective, J. Clim., 31, 2018, 7661–7678.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mu Mu, Kun Zhang or Qiang Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 41790475, 92158202, 42076017, 41576015) and Guangdong Major Project of Basic and Applied Basic Research (No. 2020B0301030004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, M., Zhang, K. & Wang, Q. Recent Progress in Applications of the Conditional Nonlinear Optimal Perturbation Approach to Atmosphere-Ocean Sciences. Chin. Ann. Math. Ser. B 43, 1033–1048 (2022). https://doi.org/10.1007/s11401-022-0376-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-022-0376-8

Keywords

2000 MR Subject Classification

Navigation